1,300 research outputs found

    DESIGN OF ADAPTIVE BACKSTEPPING WITH GRAVITATIONAL SEARCH ALGORITHM FOR NONLINEAR SYSTEM

    Get PDF
    Adaptive backstepping controller is designed for tracking purpose of nonlinear system with unknown parameter is injected to it. Gravitational search algorithm (GSA) is integrated with the designed controller in order to automatically tune its control parameters and adaptation gain since the tracking performance of the controller relies on these parameters. Performance evaluation is observed based on the tracking output and the tracking error between reference input and the system’s output. The effectiveness of the adaptive backstepping controller is verified by looking at the lowest amount value of Sum of Squared Error (SSE) attained from the simulation process. The results show that the system’s output follow the reference input given with remarkably small tracking error

    A Brief Analysis of Gravitational Search Algorithm (GSA) Publication from 2009 to May 2013

    Get PDF
    Gravitational Search Algorithm was introduced in year 2009. Since its introduction, the academic community shows a great interest on this algorith. This can be seen by the high number of publications with a short span of time. This paper analyses the publication trend of Gravitational Search Algorithm since its introduction until May 2013. The objective of this paper is to give exposure to reader the publication trend in the area of Gravitational Search Algorithm

    Q-LEARNING, POLICY ITERATION AND ACTOR-CRITIC REINFORCEMENT LEARNING COMBINED WITH METAHEURISTIC ALGORITHMS IN SERVO SYSTEM CONTROL

    Get PDF
    This paper carries out the performance analysis of three control system structures and approaches, which combine Reinforcement Learning (RL) and Metaheuristic Algorithms (MAs) as representative optimization algorithms. In the first approach, the Gravitational Search Algorithm (GSA) is employed to initialize the parameters (weights and biases) of the Neural Networks (NNs) involved in Deep Q-Learning by replacing the traditional way of initializing the NNs based on random generated values. In the second approach, the Grey Wolf Optimizer (GWO) algorithm is employed to train the policy NN in Policy Iteration RL-based control. In the third approach, the GWO algorithm is employed as a critic in an Actor-Critic framework, and used to evaluate the performance of the actor NN. The goal of this paper is to analyze all three RL-based control approaches, aiming to determine which one represents the best fit for solving the proposed control optimization problem. The performance analysis is based on non-parametric statistical tests conducted on the data obtained from real-time experimental results specific to nonlinear servo system position control

    Investigation of performance of fuzzy logic controllers optimized with the hybrid genetic-gravitational search algorithm for PMSM speed control

    Get PDF
    Fuzzy logic controllers (FLCs) are widely used to control complex systems with model uncertainty, such as alternating current motors. The design process of the FLC is generally based on the designer’s adjustments on the controller until the desired performance is achieved. However, doing the controller design in this way makes the design process quite difficult and time-consuming, so it is often impossible to make a suitable and successful design. In this study, the output membership functions of the FLC are optimized with heuristic algorithms to reach the best speed control performance of the permanent magnet synchronous motor (PMSM). This paper proposes a new hybrid algorithm called H-GA-GSA, created by combining the advantages of the Genetic Algorithm (GA) and Gravitational Search Algorithm (GSA) to optimize FLC. The paper presents a convenient adjustment and design method for optimizing FLC with heuristic algorithms considered. To evaluate the effectiveness of H-GA-GSA, the proposed hybrid algorithm has been compared with GA and GSA in terms of convergence rate, PMSM speed control performance and electromagnetic torque variations. Optimization performance and results obtained from simulation studies verify that the proposed hybrid H-GA-GSA outperforms GA and GSA

    Ball and Beam Control using Adaptive PID based on Q-Learning

    Get PDF
    The ball and beam system is one of the most used systems for benchmarking the controller response because it has nonlinear and unstable characteristics. Furthermore, in line with the increasing of computation power availability and artificial intelligence research intensity, especially the reinforcement learning field, nowadays plenty of researchers are working on a learning control approach for controlling systems. Due to that, in this paper, the adaptive PID controller based on Q-Learning (Q-PID) was used to control the ball position on the ball and beam system. From the simulation result, Q-PID outperforms the conventional PID and heuristic PID controller technique with the swifter settling time and lower overshoot percentage

    A CENTER MANIFOLD THEORY-BASED APPROACH TO THE STABILITY ANALYSIS OF STATE FEEDBACK TAKAGI-SUGENO-KANG FUZZY CONTROL SYSTEMS

    Get PDF
    The aim of this paper is to propose a stability analysis approach based on the application of the center manifold theory and applied to state feedback Takagi-Sugeno-Kang fuzzy control systems. The approach is built upon a similar approach developed for Mamdani fuzzy controllers. It starts with a linearized mathematical model of the process that is accepted to belong to the family of single input second-order nonlinear systems which are linear with respect to the control signal. In addition, smooth right-hand terms of the state-space equations that model the processes are assumed. The paper includes the validation of the approach by application to stable state feedback Takagi-Sugeno-Kang fuzzy control system for the position control of an electro-hydraulic servo-system

    Metaheuristics algorithms to identify nonlinear Hammerstein model: A decade survey

    Get PDF
    Metaheuristics have been acknowledged as an effective solution for many difficult issues related to optimization. The metaheuristics, especially swarm’s intelligence and evolutionary computing algorithms, have gained popularity within a short time over the past two decades. Various metaheuristics algorithms are being introduced on an annual basis and applications that are more new are gradually being discovered. This paper presents a survey for the years 2011-2021 on multiple metaheuristics algorithms, particularly swarm and evolutionary algorithms, to identify a nonlinear block-oriented model called the Hammerstein model, mainly because such model has garnered much interest amidst researchers to identify nonlinear systems. Besides introducing a complete survey on the various population-based algorithms to identify the Hammerstein model, this paper also investigated some empirically verified actual process plants results. As such, this article serves as a guideline on the fundamentals of identifying nonlinear block-oriented models for new practitioners, apart from presenting a comprehensive summary of cutting-edge trends within the context of this topic area
    corecore