276 research outputs found

    Parameter reduction in deep learning and classification

    Get PDF
    The goal of this thesis is to develop methods to reduce model and problem complexity in the area of classification tasks. Whether it is a traditional or a deep learning classification task, decreasing complexity helps to greatly improve efficiency, and also adds regularization to the models. In traditional machine learning, high-dimensionality can cause models to over-fit the training data, and hence not generalize well, while in deep learning, neural networks have shown to achieve state-of-the-art results, especially in the area of image recognition, in their current state cannot be easily deployed on memory restricted Internet-of-Things devices. Although much work has been carried out on dimensionality reduction, the first part of our work focuses on using dominancy between features in the aim to select a relevant subset of informative features. We propose 3 variations, with different benefits, including fast filter features selection and a hybrid filter-wrapper approach. In the second section, dedicated to deep learning, our work focuses on pruning methods to extract an overall much more efficient neural network. We show that our proposed techniques outperform previous state-of-the-art methods, across the different classification areas on a number of benchmark datasets using various classifiers and neural networks

    Deep Clustering and Deep Network Compression

    Get PDF
    The use of deep learning has grown increasingly in recent years, thereby becoming a much-discussed topic across a diverse range of fields, especially in computer vision, text mining, and speech recognition. Deep learning methods have proven to be robust in representation learning and attained extraordinary achievement. Their success is primarily due to the ability of deep learning to discover and automatically learn feature representations by mapping input data into abstract and composite representations in a latent space. Deep learningā€™s ability to deal with high-level representations from data has inspired us to make use of learned representations, aiming to enhance unsupervised clustering and evaluate the characteristic strength of internal representations to compress and accelerate deep neural networks.Traditional clustering algorithms attain a limited performance as the dimensionality in-creases. Therefore, the ability to extract high-level representations provides beneficial components that can support such clustering algorithms. In this work, we first present DeepCluster, a clustering approach embedded in a deep convolutional auto-encoder. We introduce two clustering methods, namely DCAE-Kmeans and DCAE-GMM. The DeepCluster allows for data points to be grouped into their identical cluster, in the latent space, in a joint-cost function by simultaneously optimizing the clustering objective and the DCAE objective, producing stable representations, which is appropriate for the clustering process. Both qualitative and quantitative evaluations of proposed methods are reported, showing the efficiency of deep clustering on several public datasets in comparison to the previous state-of-the-art methods.Following this, we propose a new version of the DeepCluster model to include varying degrees of discriminative power. This introduces a mechanism which enables the imposition of regularization techniques and the involvement of a supervision component. The key idea of our approach is to distinguish the discriminatory power of numerous structures when searching for a compact structure to form robust clusters. The effectiveness of injecting various levels of discriminatory powers into the learning process is investigated alongside the exploration and analytical study of the discriminatory power obtained through the use of two discriminative attributes: data-driven discriminative attributes with the support of regularization techniques, and supervision discriminative attributes with the support of the supervision component. An evaluation is provided on four different datasets.The use of neural networks in various applications is accompanied by a dramatic increase in computational costs and memory requirements. Making use of the characteristic strength of learned representations, we propose an iterative pruning method that simultaneously identifies the critical neurons and prunes the model during training without involving any pre-training or fine-tuning procedures. We introduce a majority voting technique to compare the activation values among neurons and assign a voting score to evaluate their importance quantitatively. This mechanism effectively reduces model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Empirically, we demonstrate that our pruning method is robust across various scenarios, including fully-connected networks (FCNs), sparsely-connected networks (SCNs), and Convolutional neural networks (CNNs), using two public datasets.Moreover, we also propose a novel framework to measure the importance of individual hidden units by computing a measure of relevance to identify the most critical filters and prune them to compress and accelerate CNNs. Unlike existing methods, we introduce the use of the activation of feature maps to detect valuable information and the essential semantic parts, with the aim of evaluating the importance of feature maps, inspired by novel neural network interpretability. A majority voting technique based on the degree of alignment between a se-mantic concept and individual hidden unit representations is utilized to evaluate feature mapsā€™ importance quantitatively. We also propose a simple yet effective method to estimate new convolution kernels based on the remaining crucial channels to accomplish effective CNN compression. Experimental results show the effectiveness of our filter selection criteria, which outperforms the state-of-the-art baselines.To conclude, we present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a founding contribution to the area of applying deep clustering to time-series data by presenting the first case study in the context of movement behavior clustering utilizing the DeepCluster method. The results are promising, showing that the latent space encodes sufficient patterns to facilitate accurate clustering of movement behaviors. Finally, we identify state-of-the-art and present an outlook on this important field of DTSC from five important perspectives

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    ę³Øē›®é ˜åŸŸę¤œå‡ŗć®ćŸć‚ć®č¦–č¦šēš„ę³Øę„ćƒ¢ćƒ‡ćƒ«čØ­čØˆć«é–¢ć™ć‚‹ē ”ē©¶

    Get PDF
    Visual attention is an important mechanism in the human visual system. When human observe images and videos, they usually do not describe all the contents in them. Instead, they tend to talk about the semantically important regions and objects in the images. The human eye is usually attracted by some regions of interest rather than the entire scene. These regions of interest that present the mainly meaningful or semantic content are called saliency region. Visual saliency detection refers to the use of intelligent algorithms to simulate human visual attention mechanism, extract both the low-level features and high-level semantic information and localize the salient object regions in images and videos. The generated saliency map indicates the regions that are likely to attract human attention. As a fundamental problem of image processing and computer vision, visual saliency detection algorithms have been extensively studied by researchers to solve practical tasks, such as image and video compression, image retargeting, object detection, etc. The visual attention mechanism adopted by saliency detection in general are divided into two categories, namely the bottom-up model and top-down model. The bottom-up attention algorithm focuses on utilizing the low-level visual features such as colour and edges to locate the salient objects. While the top-down attention utilizes the supervised learning to detect saliency. In recent years, more and more research tend to design deep neural networks with attention mechanisms to improve the accuracy of saliency detection. The design of deep attention neural network is inspired by human visual attention. The main goal is to enable the network to automatically capture the information that is critical to the target tasks and suppress irrelevant information, shift the attention from focusing on all to local. Currently various domainā€™s attention has been developed for saliency detection and semantic segmentation, such as the spatial attention module in convolution network, it generates a spatial attention map by utilizing the inter-spatial relationship of features; the channel attention module produces a attention by exploring the inter-channel relationship of features. All these well-designed attentions have been proven to be effective in improving the accuracy of saliency detection. This paper investigates the visual attention mechanism of salient object detection and applies it to digital histopathology image analysis for the detection and classification of breast cancer metastases. As shown in following contents, the main research contents include three parts: First, we studied the semantic attention mechanism and proposed a semantic attention approach to accurately localize the salient objects in complex scenarios. The proposed semantic attention uses Faster-RCNN to capture high-level deep features and replaces the last layer of Faster-RCNN by a FC layer and sigmoid function for visual saliency detection; it calculates proposals' attention probabilities by comparing their feature distances with the possible salient object. The proposed method introduces a re-weighting mechanism to reduce the influence of the complexity background, and a proposal selection mechanism to remove the background noise to obtain objects with accurate shape and contour. The simulation result shows that the semantic attention mechanism is robust to images with complex background due to the consideration of high-level object concept, the algorithm achieved outstanding performance among the salient object detection algorithms in the same period. Second, we designed a deep segmentation network (DSNet) for saliency object prediction. We explored a Pyramidal Attentional ASPP (PA-ASPP) module which can provide pixel level attention. DSNet extracts multi-level features with dilated ResNet-101 and the multiscale contextual information was locally weighted with the proposed PA-ASPP. The pyramid feature aggregation encodes the multi-level features from three different scales. This feature fusion incorporates neighboring scales of context features more precisely to produce better pixel-level attention. Finally, we use a scale-aware selection (SAS) module to locally weight multi-scale contextual features, capture important contexts of ASPP for the accurate and consistent dense prediction. The simulation results demonstrated that the proposed PA-ASPP is effective and can generate more coherent results. Besides, with the SAS, the model can adaptively capture the regions with different scales effectively. Finally, based on previous research on attentional mechanisms, we proposed a novel Deep Regional Metastases Segmentation (DRMS) framework for the detection and classification of breast cancer metastases. As we know, the digitalized whole slide image has high-resolution, usually has gigapixel, however the size of abnormal region is often relatively small, and most of the slide region are normal. The highly trained pathologists usually localize the regions of interest first in the whole slide, then perform precise examination in the selected regions. Even though the process is time-consuming and prone to miss diagnosis. Through observation and analysis, we believe that visual attention should be perfectly suited for the application of digital pathology image analysis. The integrated framework for WSI analysis can capture the granularity and variability of WSI, rich information from multi-grained pathological image. We first utilize the proposed attention mechanism based DSNet to detect the regional metastases in patch-level. Then, adopt the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to predict the whole metastases from individual slides. Finally, determine patient-level pN-stages by aggregating each individual slide-level prediction. In combination with the above techniques, the framework can make better use of the multi-grained information in histological lymph node section of whole-slice images. Experiments on large-scale clinical datasets (e.g., CAMELYON17) demonstrate that our method delivers advanced performance and provides consistent and accurate metastasis detection

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Single to multiple target, multiple type visual tracking

    Get PDF
    Visual tracking is a key task in applications such as intelligent surveillance, humancomputer interaction (HCI), human-robot interaction (HRI), augmented reality (AR), driver assistance systems, and medical applications. In this thesis, we make three main novel contributions for target tracking in video sequences. First, we develop a long-term model-free single target tracking by learning discriminative correlation ļ¬lters and an online classiļ¬er that can track a target of interest in both sparse and crowded scenes. In this case, we learn two diļ¬€erent correlation ļ¬lters, translation and scale correlation ļ¬lters, using diļ¬€erent visual features. We also include a re-detection module that can re-initialize the tracker in case of tracking failures due to long-term occlusions. Second, a multiple target, multiple type ļ¬ltering algorithm is developed using Random Finite Set (RFS) theory. In particular, we extend the standard Probability Hypothesis Density (PHD) ļ¬lter for multiple type of targets, each with distinct detection properties, to develop multiple target, multiple type ļ¬ltering, N-type PHD ļ¬lter, where N ā‰„ 2, for handling confusions that can occur among target types at the measurements level. This method takes into account not only background false positives (clutter), but also confusions between target detections, which are in general diļ¬€erent in character from background clutter. Then, under the assumptions of Gaussianity and linearity, we extend Gaussian mixture (GM) implementation of the standard PHD ļ¬lter for the proposed N-type PHD ļ¬lter termed as N-type GM-PHD ļ¬lter. Third, we apply this N-type GM-PHD ļ¬lter to real video sequences by integrating object detectorsā€™ information into this ļ¬lter for two scenarios. In the ļ¬rst scenario, a tri-GM-PHD ļ¬lter is applied to real video sequences containing three types of multiple targets in the same scene, two football teams and a referee, using separate but confused detections. In the second scenario, we use a dual GM-PHD ļ¬lter for tracking pedestrians and vehicles in the same scene handling their detectorsā€™ confusions. For both cases, Munkresā€™s variant of the Hungarian assignment algorithm is used to associate tracked target identities between frames. We make extensive evaluations of these developed algorithms and ļ¬nd out that our methods outperform their corresponding state-of-the-art approaches by a large margin.EPSR
    • ā€¦
    corecore