3,440 research outputs found

    Regular Cost Functions, Part I: Logic and Algebra over Words

    Full text link
    The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values "inside" and "outside". This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic-second order logic over words. Our notion of regularity can be -- as in the classical theory of regular languages -- equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.Comment: 47 page

    A categorical analogue of the monoid semiring construction

    Full text link
    This paper introduces and studies a categorical analogue of the familiar monoid semiring construction. By introducing an axiomatisation of summation that unifies notions of summation from algebraic program semantics with various notions of summation from the theory of analysis, we demonstrate that the monoid semiring construction generalises to cases where both the monoid and the semiring are categories. This construction has many interesting and natural categorical properties, and natural computational interpretations.Comment: 34 pages, 5 diagram

    Finite transducers for divisibility monoids

    Get PDF
    Divisibility monoids are a natural lattice-theoretical generalization of Mazurkiewicz trace monoids, namely monoids in which the distributivity of the involved divisibility lattices is kept as an hypothesis, but the relations between the generators are not supposed to necessarily be commutations. Here, we show that every divisibility monoid admits an explicit finite transducer which allows to compute normal forms in quadratic time. In addition, we prove that every divisibility monoid is biautomatic.Comment: 20 page
    • …
    corecore