133,857 research outputs found

    Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy

    Get PDF
    A strong converse theorem for the classical capacity of a quantum channel states that the probability of correctly decoding a classical message converges exponentially fast to zero in the limit of many channel uses if the rate of communication exceeds the classical capacity of the channel. Along with a corresponding achievability statement for rates below the capacity, such a strong converse theorem enhances our understanding of the capacity as a very sharp dividing line between achievable and unachievable rates of communication. Here, we show that such a strong converse theorem holds for the classical capacity of all entanglement-breaking channels and all Hadamard channels (the complementary channels of the former). These results follow by bounding the success probability in terms of a "sandwiched" Renyi relative entropy, by showing that this quantity is subadditive for all entanglement-breaking and Hadamard channels, and by relating this quantity to the Holevo capacity. Prior results regarding strong converse theorems for particular covariant channels emerge as a special case of our results.Comment: 33 pages; v4: minor changes throughout, accepted for publication in Communications in Mathematical Physic

    Smooth Entropy Bounds on One-Shot Quantum State Redistribution

    Get PDF
    In quantum state redistribution as introduced in [Luo and Devetak (2009)] and [Devetak and Yard (2008)], there are four systems of interest: the AA system held by Alice, the BB system held by Bob, the CC system that is to be transmitted from Alice to Bob, and the RR system that holds a purification of the state in the ABCABC registers. We give upper and lower bounds on the amount of quantum communication and entanglement required to perform the task of quantum state redistribution in a one-shot setting. Our bounds are in terms of the smooth conditional min- and max-entropy, and the smooth max-information. The protocol for the upper bound has a clear structure, building on the work [Oppenheim (2008)]: it decomposes the quantum state redistribution task into two simpler quantum state merging tasks by introducing a coherent relay. In the independent and identical (iid) asymptotic limit our bounds for the quantum communication cost converge to the quantum conditional mutual information I(C:RB)I(C:R|B), and our bounds for the total cost converge to the conditional entropy H(CB)H(C|B). This yields an alternative proof of optimality of these rates for quantum state redistribution in the iid asymptotic limit. In particular, we obtain a strong converse for quantum state redistribution, which even holds when allowing for feedback.Comment: v3: 29 pages, 1 figure, extended strong converse discussio

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    The invalidity of a strong capacity for a quantum channel with memory

    Get PDF
    The strong capacity of a particular channel can be interpreted as a sharp limit on the amount of information which can be transmitted reliably over that channel. To evaluate the strong capacity of a particular channel one must prove both the direct part of the channel coding theorem and the strong converse for the channel. Here we consider the strong converse theorem for the periodic quantum channel and show some rather surprising results. We first show that the strong converse does not hold in general for this channel and therefore the channel does not have a strong capacity. Instead, we find that there is a scale of capacities corresponding to error probabilities between integer multiples of the inverse of the periodicity of the channel. A similar scale also exists for the random channel.Comment: 7 pages, double column. Comments welcome. Repeated equation removed and one reference adde

    Strong converse rates for classical communication over thermal and additive noise bosonic channels

    Get PDF
    We prove that several known upper bounds on the classical capacity of thermal and additive noise bosonic channels are actually strong converse rates. Our results strengthen the interpretation of these upper bounds, in the sense that we now know that the probability of correctly decoding a classical message rapidly converges to zero in the limit of many channel uses if the communication rate exceeds these upper bounds. In order for these theorems to hold, we need to impose a maximum photon number constraint on the states input to the channel (the strong converse property need not hold if there is only a mean photon number constraint). Our first theorem demonstrates that Koenig and Smith's upper bound on the classical capacity of the thermal bosonic channel is a strong converse rate, and we prove this result by utilizing the structural decomposition of a thermal channel into a pure-loss channel followed by an amplifier channel. Our second theorem demonstrates that Giovannetti et al.'s upper bound on the classical capacity of a thermal bosonic channel corresponds to a strong converse rate, and we prove this result by relating success probability to rate, the effective dimension of the output space, and the purity of the channel as measured by the Renyi collision entropy. Finally, we use similar techniques to prove that similar previously known upper bounds on the classical capacity of an additive noise bosonic channel correspond to strong converse rates.Comment: Accepted for publication in Physical Review A; minor changes in the text and few reference

    Achieving the physical limits of the bounded-storage model

    Get PDF
    Secure two-party cryptography is possible if the adversary's quantum storage device suffers imperfections. For example, security can be achieved if the adversary can store strictly less then half of the qubits transmitted during the protocol. This special case is known as the bounded-storage model, and it has long been an open question whether security can still be achieved if the adversary's storage were any larger. Here, we answer this question positively and demonstrate a two-party protocol which is secure as long as the adversary cannot store even a small fraction of the transmitted pulses. We also show that security can be extended to a larger class of noisy quantum memories.Comment: 10 pages (revtex), 2 figures, v2: published version, minor change

    Unconditional security from noisy quantum storage

    Full text link
    We consider the implementation of two-party cryptographic primitives based on the sole assumption that no large-scale reliable quantum storage is available to the cheating party. We construct novel protocols for oblivious transfer and bit commitment, and prove that realistic noise levels provide security even against the most general attack. Such unconditional results were previously only known in the so-called bounded-storage model which is a special case of our setting. Our protocols can be implemented with present-day hardware used for quantum key distribution. In particular, no quantum storage is required for the honest parties.Comment: 25 pages (IEEE two column), 13 figures, v4: published version (to appear in IEEE Transactions on Information Theory), including bit wise min-entropy sampling. however, for experimental purposes block sampling can be much more convenient, please see v3 arxiv version if needed. See arXiv:0911.2302 for a companion paper addressing aspects of a practical implementation using block samplin
    corecore