9,638 research outputs found

    Notes on Majority Boolean Algebra

    Get PDF
    A Majority-Inverter Graph (MIG) is a homogeneous logic network, where each node represents the majority function. Recently, a logic optimization package based on the MIG data-structure, with 3-input majority node (M3) has been proposed [2], [30]. It is demonstrated to have efficient area-delay-power results compared to state-of-the-art logic optimization packages. In this paper, the Boolean algebraic transformations based on majority logic, i.e., majority Boolean algebra is studied. In the first part of this paper, we summarize a range of identities for majority Boolean algebra with their corresponding proofs. In the second part, we venture towards heterogeneous logic network and provide reversible logic mapping of majority nodes

    Orthomodular-Valued Models for Quantum Set Theory

    Full text link
    In 1981, Takeuti introduced quantum set theory by constructing a model of set theory based on quantum logic represented by the lattice of closed linear subspaces of a Hilbert space in a manner analogous to Boolean-valued models of set theory, and showed that appropriate counterparts of the axioms of Zermelo-Fraenkel set theory with the axiom of choice (ZFC) hold in the model. In this paper, we aim at unifying Takeuti's model with Boolean-valued models by constructing models based on general complete orthomodular lattices, and generalizing the transfer principle in Boolean-valued models, which asserts that every theorem in ZFC set theory holds in the models, to a general form holding in every orthomodular-valued model. One of the central problems in this program is the well-known arbitrariness in choosing a binary operation for implication. To clarify what properties are required to obtain the generalized transfer principle, we introduce a class of binary operations extending the implication on Boolean logic, called generalized implications, including even non-polynomially definable operations. We study the properties of those operations in detail and show that all of them admit the generalized transfer principle. Moreover, we determine all the polynomially definable operations for which the generalized transfer principle holds. This result allows us to abandon the Sasaki arrow originally assumed for Takeuti's model and leads to a much more flexible approach to quantum set theory.Comment: 25 pages, v2: to appear in Rev. Symb. Logic, v3: corrected typo

    On what I do not understand (and have something to say): Part I

    Full text link
    This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdote and opinion. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept at a minimum (``see ... '' means: see the references there and possibly the paper itself). The base were lectures in Rutgers Fall'97 and reflect my knowledge then. The other half, concentrating on model theory, will subsequently appear
    corecore