17,409 research outputs found

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    On quantum symmetries of ADE graphs

    Full text link
    The double triangle algebra(DTA) associated to an ADE graph is considered. A description of its bialgebra structure based on a reconstruction approach is given. This approach takes as initial data the representation theory of the DTA as given by Ocneanu's cell calculus. It is also proved that the resulting DTA has the structure of a weak *-Hopf algebra. As an illustrative example, the case of the graph A3 is described in detail.Comment: 15 page

    Nonequilibrium potential and fluctuation theorems for quantum maps

    Get PDF
    We derive a general fluctuation theorem for quantum maps. The theorem applies to a broad class of quantum dynamics, such as unitary evolution, decoherence, thermalization, and other types of evolution for quantum open systems. The theorem reproduces well-known fluctuation theorems in a single and simplified framework and extends the Hatano-Sasa theorem to quantum nonequilibrium processes. Moreover, it helps to elucidate the physical nature of the environment inducing a given dynamics in an open quantum system.Comment: 10 page

    Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization

    Full text link
    In this work, an effective construction, via Sch\"utzenberger's monoidal factorization, of dual bases for the non commutative symmetric and quasi-symmetric functions is proposed
    corecore