920 research outputs found

    Guilbaud's Theorem : An early contribution to judgment aggregation

    Get PDF
    In a paper published in 1952, the French mathematician Georges-Théodule Guilbaud has generalized Arrow's impossibility result to the "logical problem of aggregation", thus anticipating the literature on abstract aggregation theory and judgment aggregation. We reconstruct the proof of Guilbaud's theorem, which is also of technical interest, because it can be seen as the first use of ultrafilters in social choice theory.Arrow's theorem, aggregation rule, judgment aggregation, logical connexions, simple game, ultrafilter.

    Guilbaud's 1952 theorem on the logical problem of aggregation

    Get PDF
    In a paper published in 1952, shortly after publication of Arrow's celebrated impossibility result, the French mathematicien Georges-Théodule Guilbaud has obtained a dictatorship result for the logical problem of aggregation, thus anticipating the literature on abstract aggregation theory and judgment aggregation. We reconstruct the proof of Guilbaud's theorem, which is also of technical interest, because it can be seen as the first use of ultrafilters in social choice theory.Aggregation ; judgment aggregation ; logical connectives ; simple game ; ultrafilter

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    Consensus theories: an oriented survey

    Get PDF
    This article surveys seven directions of consensus theories: Arrowian results, federation consensus rules, metric consensus rules, tournament solutions, restricted domains, abstract consensus theories, algorithmic and complexity issues. This survey is oriented in the sense that it is mainly – but not exclusively – concentrated on the most significant results obtained, sometimes with other searchers, by a team of French searchers who are or were full or associate members of the Centre d'Analyse et de Mathématique Sociale (CAMS).Consensus theories ; Arrowian results ; aggregation rules ; metric consensus rules ; median ; tournament solutions ; restricted domains ; lower valuations ; median semilattice ; complexity

    A model of influence in a social network

    Get PDF
    In the paper, we study a model of influence in a social network. It is assumed that each player has an inclination to say YES or NO which, due to influence of other players, may be different from the decision of the player. The point of departure here is the concept of the Hoede-Bakker index - the notion which computes the overall decisional "power" of a player in a social network. The main drawback of the Hoede-Bakker index is that it hides the actual role of the influence function, analyzing only the final decision in terms of success and failure. In this paper, we separate the influence part from the group decision part, and focus on the description and analysis of the influence part. We propose among other descriptive tools a definition of a (weighted) influence index of a coalition upon an individual. Moreover, we consider different influence functions representative of commonly encountered situations. Finally, we propose a suitable definition of a modified decisional power.Influence function, influence index, decisional power, social network.

    Lattice-Based Group Signatures: Achieving Full Dynamicity (and Deniability) with Ease

    Full text link
    In this work, we provide the first lattice-based group signature that offers full dynamicity (i.e., users have the flexibility in joining and leaving the group), and thus, resolve a prominent open problem posed by previous works. Moreover, we achieve this non-trivial feat in a relatively simple manner. Starting with Libert et al.'s fully static construction (Eurocrypt 2016) - which is arguably the most efficient lattice-based group signature to date, we introduce simple-but-insightful tweaks that allow to upgrade it directly into the fully dynamic setting. More startlingly, our scheme even produces slightly shorter signatures than the former, thanks to an adaptation of a technique proposed by Ling et al. (PKC 2013), allowing to prove inequalities in zero-knowledge. Our design approach consists of upgrading Libert et al.'s static construction (EUROCRYPT 2016) - which is arguably the most efficient lattice-based group signature to date - into the fully dynamic setting. Somewhat surprisingly, our scheme produces slightly shorter signatures than the former, thanks to a new technique for proving inequality in zero-knowledge without relying on any inequality check. The scheme satisfies the strong security requirements of Bootle et al.'s model (ACNS 2016), under the Short Integer Solution (SIS) and the Learning With Errors (LWE) assumptions. Furthermore, we demonstrate how to equip the obtained group signature scheme with the deniability functionality in a simple way. This attractive functionality, put forward by Ishida et al. (CANS 2016), enables the tracing authority to provide an evidence that a given user is not the owner of a signature in question. In the process, we design a zero-knowledge protocol for proving that a given LWE ciphertext does not decrypt to a particular message
    corecore