5 research outputs found

    A regularity criterion for the three-dimensional micropolar fluid system in homogeneous Besov spaces

    Get PDF
    By establishing a new trilinear estimate, we show a regularity criterion for the three dimensional micropolar fluid system via the velocity in homogeneous Besov spaces. This improves [B. Q. Dong, Z. L. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces, Nonlinear Anal. 73(2010), 2334-2341] in some sense

    ๊ตญ์†Œ ๋ฐ ๋น„๊ตญ์†Œ ์ธก๋„ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์˜ ์ •์น™์„ฑ ์ด๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2023. 2. ๋ณ€์ˆœ์‹.In this thesis, we establish various regularity results for nonlinear measure data problems. The results obtained are part of a program devoted to nonlinear Calderรณn-Zygmund theory and nonlinear potential theory. Firstly, we obtain maximal integrability and fractional differentiability results for elliptic measure data problems with Orlicz growth and borderline double phase growth, respectively. We also obtain fractional differentiability results for parabolic measure data problems under a minimal assumption on the coefficients. Secondly, we obtain gradient potential estimates and fractional differentiability results for elliptic obstacle problems with measure data, by using linearization techniques. In particular, we develop a new method to obtain potential estimates for irregular obstacle problems. For the case of single obstacle problems with Lยน-data, we further obtain uniqueness results and comparison principles in order to improve such regularity results. Lastly, we show existence, regularity and potential estimates for mixed local and nonlocal equations with measure data. Also, as a first step to the regularity theory for anisotropic nonlocal problems with nonstandard growth, we establish Hรถlder regularity for nonlocal double phase problems by identifying sharp assumptions analogous to those for local double phase problems.์ด ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์„ ํ˜• ์ธก๋„ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ •์น™์„ฑ ๊ฒฐ๊ณผ๋“ค์„ ์–ป๋Š”๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋“ค์€ ๋น„์„ ํ˜• ์นผ๋ฐ๋ก -์ง€๊ทธ๋ฌธํŠธ ์ด๋ก  ๋ฐ ๋น„์„ ํ˜• ํผํ…์…œ ์ด๋ก ์„ ๋‹ค๋ฃจ๋Š” ๊ณผ์ •์˜ ์ผ๋ถ€์ด๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ์˜ค๋ฅผ๋ฆฌ์ธ  ์„ฑ์žฅ์กฐ๊ฑด ๋ฐ ๊ฒฝ๊ณ„์„  ์ด์ค‘์œ„์ƒ ์„ฑ์žฅ์กฐ๊ฑด์„ ๊ฐ€์ง€๋Š” ํƒ€์›ํ˜• ์ธก๋„ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์— ๋Œ€ํ•˜์—ฌ ๊ฐ๊ฐ ์ตœ๋Œ€ ์ ๋ถ„์„ฑ ๋ฐ ๋ถ„์ˆ˜์ฐจ์ˆ˜ ๋ฏธ๋ถ„์„ฑ ๊ฒฐ๊ณผ๋ฅผ ์–ป๋Š”๋‹ค. ๋˜ํ•œ ํฌ๋ฌผํ˜• ์ธก๋„ ๋ฐ์ดํ„ฐ ๋ฌธ์ œ์— ๋Œ€ํ•˜์—ฌ ๋ถ„์ˆ˜์ฐจ์ˆ˜ ๋ฏธ๋ถ„์„ฑ์„ ๊ณ„์ˆ˜์— ๋Œ€ํ•œ ์ตœ์†Œํ•œ์˜ ๊ฐ€์ • ํ•˜์—์„œ ์ฆ๋ช…ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ธก๋„ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” ํƒ€์›ํ˜• ์žฅ์• ๋ฌผ ๋ฌธ์ œ์— ๋Œ€ํ•˜์—ฌ ์„ ํ˜•ํ™” ๊ธฐ๋ฒ•์„ ์ด์šฉํ•จ์œผ๋กœ์จ ๊ทธ๋ ˆ์ด๋””์–ธํŠธ ํผํ…์…œ ๊ฐ€๋Š  ๋ฐ ๋ถ„์ˆ˜์ฐจ์ˆ˜ ๋ฏธ๋ถ„์„ฑ์„ ์ฆ๋ช…ํ•œ๋‹ค. ํŠนํžˆ ๋น„์ •์น™ ์žฅ์• ๋ฌผ ๋ฌธ์ œ์— ๋Œ€ํ•ด ํผํ…์…œ ๊ฐ€๋Š ์„ ์–ป๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ๋” ๋‚˜์•„๊ฐ€, Lยน ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” ๋‹จ์ผ ์žฅ์• ๋ฌผ ๋ฌธ์ œ์— ๋Œ€ํ•˜์—ฌ๋Š” ํ•ด์˜ ์œ ์ผ์„ฑ ๋ฐ ๋น„๊ต ์›๋ฆฌ๋ฅผ ์ฆ๋ช…ํ•˜์—ฌ ์ด๋Ÿฌํ•œ ์ •์น™์„ฑ ๊ฒฐ๊ณผ๋“ค์„ ๊ฐœ์„ ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ธก๋„ ๋ฐ์ดํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ตญ์†Œ ๋ฐ ๋น„๊ตญ์†Œ ํ˜ผํ•ฉ ๋ฐฉ์ •์‹์— ๋Œ€ํ•˜์—ฌ ํ•ด์˜ ์กด์žฌ์„ฑ, ์ •์น™์„ฑ ๋ฐ ํผํ…์…œ ๊ฐ€๋Š ์„ ์ฆ๋ช…ํ•œ๋‹ค. ๋˜ํ•œ, ๋น„ํ‘œ์ค€ ์„ฑ์žฅ์กฐ๊ฑด์„ ๊ฐ€์ง€๋Š” ๋น„๋“ฑ๋ฐฉ์  ๋น„๊ตญ์†Œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์ •์น™์„ฑ ์ด๋ก ์˜ ์ฒซ๊ฑธ์Œ์œผ๋กœ์„œ, ๋น„๊ตญ์†Œ ์ด์ค‘์œ„์ƒ ๋ฌธ์ œ์— ๋Œ€ํ•œ ํš”๋” ์ •์น™์„ฑ์„ ๊ตญ์†Œ ์ด์ค‘์œ„์ƒ ๋ฌธ์ œ์˜ ๊ฒฝ์šฐ๊ณผ ์œ ์‚ฌํ•œ ์ตœ์ ์˜ ์กฐ๊ฑด ํ•˜์—์„œ ์ฆ๋ช…ํ•œ๋‹ค.1 Introduction 1 1.1 Measure data problems 1 1.1.1 Nonlinear Calderรณn-Zygmund theory 2 1.1.2 Nonlinear potential theory 4 1.2 Elliptic measure data problems with nonstandard growth 7 1.3 Elliptic obstacle problems with measure data 8 1.4 Nonlocal equations, mixed local and nonlocal equations 9 1.5 Nonlocal operators and measure data 10 1.6 Nonlocal operators with nonstandard growth 11 2 Preliminaries 13 2.1 General notations 13 2.2 Function spaces 15 2.2.1 Musielak-Orlicz spaces 15 2.2.2 Fractional Sobolev spaces 18 2.2.3 Lorentz spaces, Marcinkiewicz spaces 21 2.3 Auxiliary results 22 2.3.1 Basic properties of the vector fields V(ยท) and A(ยท) 22 2.3.2 Regularity for homogeneous equations 24 2.3.3 Technical lemmas 34 3 Elliptic and parabolic equations with measure data 35 3.1 Maximal integrability for elliptic measure data problems with Orlicz growth 35 3.1.1 Main results 35 3.1.2 Some technical results 37 3.1.3 Proof of Theorem 3.1.2 43 3.2 Fractional differentiability for elliptic measure data problems with double phase in the borderline case 53 3.2.1 Main results 53 3.2.2 Preliminaries 55 3.2.3 Regularity for homogeneous problems 56 3.2.4 Comparison estimates 61 3.2.5 Proof of Theorem 3.2.2 66 3.3 Fractional differentiability for parabolic measure data problems 71 3.3.1 Main results 71 3.3.2 Preliminaries 73 3.3.3 Some technical results 75 3.3.4 Proof of Theorem 3.3.3 79 4 Elliptic obstacle problems with measure data 83 4.1 Potential estimates for obstacle problems with measure data 84 4.1.1 Main results 85 4.1.2 Reverse Hรถlders inequalities for homogeneous obstacle problems 88 4.1.3 Basic comparison estimates 93 4.1.4 Linearized comparison estimates 109 4.1.5 The two-scales degenerate alternative 109 4.1.6 The two-scales non-degenerate alternative 111 4.1.7 Combining the two alternatives 126 4.1.8 Proof of Theorem 4.1.2 128 4.1.9 Proof of Theorem 4.1.3 132 4.2 Fractional differentiability for double obstacle problems with measure data 138 4.2.1 Main results 139 4.2.2 Comparison estimates 141 4.2.3 Proof of Theorem 4.2.2 156 4.2.4 Proof of Theorem 4.2.4 158 4.3 Comparison principle for obstacle problems with Lยน-data 162 4.3.1 Comparison principles 163 4.3.2 Applications to regularity results 166 5 Mixed local and nonlocal equations with measure data 171 5.1 Main results 171 5.2 Preliminaries 177 5.3 Regularity for homogeneous equations 178 5.4 Comparison estimates 184 5.5 Existence of SOLA 189 5.6 Potential estimates 194 5.6.1 Proof of Theorems 5.1.4 and 5.1.7 194 5.6.2 Proof of Theorem 5.1.5 197 5.7 Continuity criteria for SOLA 204 5.7.1 Proof of Theorem 5.1.8 204 5.7.2 Proof of Theorem 5.1.10 205 6 Nonlocal double phase problems 207 6.1 Main results 208 6.2 Preliminaries 211 6.2.1 Function spaces 211 6.2.2 Inequalities 212 6.3 Existence of weak solutions 215 6.4 Caccioppoli estimates and local boundedness 217 6.5 Hรถlder continuity 225 6.5.1 Logarithmic estimates 225 6.5.2 Proof of Theorem 6.1.2 235 Abstract (in Korean) 261๋ฐ•

    SIMULATING SEISMIC WAVE PROPAGATION IN TWO-DIMENSIONAL MEDIA USING DISCONTINUOUS SPECTRAL ELEMENT METHODS

    Get PDF
    We introduce a discontinuous spectral element method for simulating seismic wave in 2- dimensional elastic media. The methods combine the flexibility of a discontinuous finite element method with the accuracy of a spectral method. The elastodynamic equations are discretized using high-degree of Lagrange interpolants and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. This combination of discretization and integration results in a diagonal mass matrix and the use of discontinuous finite element method makes the calculation can be done locally in each element. Thus, the algorithm is simplified drastically. We validated the results of one-dimensional problem by comparing them with finite-difference time-domain method and exact solution. The comparisons show excellent agreement
    corecore