21,118 research outputs found

    Note on the number of minimal lattice paths restricted by two parallel lines

    Get PDF
    AbstractThe paper deals with minimal lattice paths from the origin to a point (n,m) which do not cross both two given parallel lines I and II with an incline k (⩾1), but touch the line I a specified number of times. We get the generating functions for the number of distinct minimal lattice paths satisfying these conditions

    Random lattice triangulations: Structure and algorithms

    Get PDF
    The paper concerns lattice triangulations, that is, triangulations of the integer points in a polygon in R2\mathbb{R}^2 whose vertices are also integer points. Lattice triangulations have been studied extensively both as geometric objects in their own right and by virtue of applications in algebraic geometry. Our focus is on random triangulations in which a triangulation σ\sigma has weight λ∣σ∣\lambda^{|\sigma|}, where λ\lambda is a positive real parameter, and ∣σ∣|\sigma| is the total length of the edges in σ\sigma. Empirically, this model exhibits a "phase transition" at λ=1\lambda=1 (corresponding to the uniform distribution): for λ<1\lambda<1 distant edges behave essentially independently, while for λ>1\lambda>1 very large regions of aligned edges appear. We substantiate this picture as follows. For λ<1\lambda<1 sufficiently small, we show that correlations between edges decay exponentially with distance (suitably defined), and also that the Glauber dynamics (a local Markov chain based on flipping edges) is rapidly mixing (in time polynomial in the number of edges in the triangulation). This dynamics has been proposed by several authors as an algorithm for generating random triangulations. By contrast, for λ>1\lambda>1 we show that the mixing time is exponential. These are apparently the first rigorous quantitative results on the structure and dynamics of random lattice triangulations.Comment: Published at http://dx.doi.org/10.1214/14-AAP1033 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hole motion in an arbitrary spin background: Beyond the minimal spin-polaron approximation

    Full text link
    The motion of a single hole in an arbitrary magnetic background is investigated for the 2D t-J model. The wavefunction of the hole is described within a generalized string picture which leads to a modified concept of spin polarons. We calculate the one-hole spectral function using a large string basis for the limits of a Neel ordered and a completely disordered background. In addition we use a simple approximation to interpolate between these cases. For the antiferromagnetic background we reproduce the well-known quasiparticle band. In the disordered case the shape of the spectral function is found to be strongly momentum-dependent, the quasiparticle weight vanishes for all hole momenta. Finally, we discuss the relevance of results for the lowest energy eigenvalue and its dispersion obtained from calculations using a polaron of minimal size as found in the literature.Comment: 13 pages, 8 figures, to appear in Phys. Rev.

    On Minimal Trajectories for Mobile Sampling of Bandlimited Fields

    Get PDF
    We study the design of sampling trajectories for stable sampling and the reconstruction of bandlimited spatial fields using mobile sensors. The spectrum is assumed to be a symmetric convex set. As a performance metric we use the path density of the set of sampling trajectories that is defined as the total distance traveled by the moving sensors per unit spatial volume of the spatial region being monitored. Focussing first on parallel lines, we identify the set of parallel lines with minimal path density that contains a set of stable sampling for fields bandlimited to a known set. We then show that the problem becomes ill-posed when the optimization is performed over all trajectories by demonstrating a feasible trajectory set with arbitrarily low path density. However, the problem becomes well-posed if we explicitly specify the stability margins. We demonstrate this by obtaining a non-trivial lower bound on the path density of an arbitrary set of trajectories that contain a sampling set with explicitly specified stability bounds.Comment: 28 pages, 8 figure
    • …
    corecore