270 research outputs found

    Note on the Irreducible Triangulations of the Klein Bottle

    Full text link
    We give the complete list of the 29 irreducible triangulations of the Klein bottle. We show how the construction of Lawrencenko and Negami, which listed only 25 such irreducible triangulations, can be modified at two points to produce the 4 additional irreducible triangulations of the Klein bottle.Comment: 10 pages, 8 figures, submitted to Journal of Combinatorial Theory, Series B. Section 3 expande

    Some Triangulated Surfaces without Balanced Splitting

    Full text link
    Let G be the graph of a triangulated surface Σ\Sigma of genus g2g\geq 2. A cycle of G is splitting if it cuts Σ\Sigma into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and g-k. It was conjectured that G contains a splitting cycle (Barnette '1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001) claiming that G should contain splitting cycles of every possible type.Comment: 15 pages, 7 figure

    Irreducible Triangulations are Small

    Get PDF
    A triangulation of a surface is \emph{irreducible} if there is no edge whose contraction produces another triangulation of the surface. We prove that every irreducible triangulation of a surface with Euler genus g1g\geq1 has at most 13g413g-4 vertices. The best previous bound was 171g72171g-72.Comment: v2: Referees' comments incorporate

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    Enumeration of non-orientable 3-manifolds using face pairing graphs and union-find

    Full text link
    Drawing together techniques from combinatorics and computer science, we improve the census algorithm for enumerating closed minimal P^2-irreducible 3-manifold triangulations. In particular, new constraints are proven for face pairing graphs, and pruning techniques are improved using a modification of the union-find algorithm. Using these results we catalogue all 136 closed non-orientable P^2-irreducible 3-manifolds that can be formed from at most ten tetrahedra.Comment: 37 pages, 34 figure

    Even triangulations of n-dimensional pseudo-manifolds

    No full text
    corecore