2,564 research outputs found

    Numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions

    Get PDF
    We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation ut+6uux+ϵ2uxxx=0u_t+6uu_x+\epsilon^{2}u_{xxx}=0 for ϵ1\epsilon\ll1 and give a quantitative comparison of the numerical solution with various asymptotic formulae for small ϵ\epsilon in the whole (x,t)(x,t)-plane. The matching of the asymptotic solutions is studied numerically

    Daubechies Wavelets for Linear Scaling Density Functional Theory

    Get PDF
    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of DFT calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the contracted basis functions for closely related environments, e.g. in geometry optimizations or combined calculations of neutral and charged systems

    Unusual localisation effects in quantum percolation

    Full text link
    We present a detailed study of the quantum site percolation problem on simple cubic lattices, thereby focussing on the statistics of the local density of states and the spatial structure of the single particle wavefunctions. Using the Kernel Polynomial Method we refine previous studies of the metal-insulator transition and demonstrate the non-monotonic energy dependence of the quantum percolation threshold. Remarkably, the data indicates a ``fragmentation'' of the spectrum into extended and localised states. In addition, the observation of a chequerboard-like structure of the wavefunctions at the band centre can be interpreted as anomalous localisation.Comment: 5 pages, 7 figure

    Nonlinear stability analysis of plane Poiseuille flow by normal forms

    Full text link
    In the subcritical interval of the Reynolds number 4320\leq R\leq R_c\equiv 5772, the Navier--Stokes equations of the two--dimensional plane Poiseuille flow are approximated by a 22--dimensional Galerkin representation formed from eigenfunctions of the Orr--Sommerfeld equation. The resulting dynamical system is brought into a generalized normal form which is characterized by a disposable parameter controlling the magnitude of denominators of the normal form transformation. As rigorously proved, the generalized normal form decouples into a low--dimensional dominant and a slaved subsystem. {}From the dominant system the critical amplitude is calculated as a function of the Reynolds number. As compared with the Landau method, which works down to R=5300, the phase velocity of the critical mode agrees within 1 per cent; the critical amplitude is reproduced similarly well except close to the critical point, where the maximal error is about 16 per cent. We also examine boundary conditions which partly differ from the usual ones.Comment: latex file; 4 Figures will be sent, on request, by airmail or by fax (e-mail address: rauh at beta.physik.uni-oldenburg.de
    corecore