278 research outputs found

    Real-time and distributed applications for dictionary-based data compression

    Get PDF
    The greedy approach to dictionary-based static text compression can be executed by a finite state machine. When it is applied in parallel to different blocks of data independently, there is no lack of robustness even on standard large scale distributed systems with input files of arbitrary size. Beyond standard large scale, a negative effect on the compression effectiveness is caused by the very small size of the data blocks. A robust approach for extreme distributed systems is presented in this paper, where this problem is fixed by overlapping adjacent blocks and preprocessing the neighborhoods of the boundaries. Moreover, we introduce the notion of pseudo-prefix dictionary, which allows optimal compression by means of a real-time semi-greedy procedure and a slight improvement on the compression ratio obtained by the distributed implementations

    Entropy Lower Bounds for Dictionary Compression

    Get PDF
    We show that a wide class of dictionary compression methods (including LZ77, LZ78, grammar compressors as well as parsing-based structures) require |S|H_k(S) + Omega (|S|k log sigma/log_sigma |S|) bits to encode their output. This matches known upper bounds and improves the information-theoretic lower bound of |S|H_k(S). To this end, we abstract the crucial properties of parsings created by those methods, construct a certain family of strings and analyze the parsings of those strings. We also show that for k = alpha log_sigma |S|, where 0 < alpha < 1 is a constant, the aforementioned methods produce an output of size at least 1/(1-alpha)|S|H_k(S) bits. Thus our results separate dictionary compressors from context-based one (such as PPM) and BWT-based ones, as the those include methods achieving |S|H_k(S) + O(sigma^k log sigma) bits, i.e. the redundancy depends on k and sigma but not on |S|

    Lempel-Ziv Compression in a Sliding Window

    Get PDF

    Lempel-Ziv Compression in a Sliding Window

    Get PDF
    We present new algorithms for the sliding window Lempel-Ziv (LZ77) problem and the approximate rightmost LZ77 parsing problem. Our main result is a new and surprisingly simple algorithm that computes the sliding window LZ77 parse in O(w) space and either O(n) expected time or O(n log log w+z log log s) deterministic time. Here, w is the window size, n is the size of the input string, z is the number of phrases in the parse, and s is the size of the alphabet. This matches the space and time bounds of previous results while removing constant size restrictions on the alphabet size. To achieve our result, we combine a simple modification and augmentation of the suffix tree with periodicity properties of sliding windows. We also apply this new technique to obtain an algorithm for the approximate rightmost LZ77 problem that uses O(n(log z + log log n)) time and O(n) space and produces a (1+e)-approximation of the rightmost parsing (any constant e>0). While this does not improve the best known time-space trade-offs for exact rightmost parsing, our algorithm is significantly simpler and exposes a direct connection between sliding window parsing and the approximate rightmost matching problem

    Relations Between Greedy and Bit-Optimal LZ77 Encodings

    Get PDF
    This paper investigates the size in bits of the LZ77 encoding, which is the most popular and efficient variant of the Lempel--Ziv encodings used in data compression. We prove that, for a wide natural class of variable-length encoders for LZ77 phrases, the size of the greedily constructed LZ77 encoding on constant alphabets is within a factor O(lognlogloglogn)O(\frac{\log n}{\log\log\log n}) of the optimal LZ77 encoding, where nn is the length of the processed string. We describe a series of examples showing that, surprisingly, this bound is tight, thus improving both the previously known upper and lower bounds. Further, we obtain a more detailed bound O(min{z,lognloglogz})O(\min\{z, \frac{\log n}{\log\log z}\}), which uses the number zz of phrases in the greedy LZ77 encoding as a parameter, and construct a series of examples showing that this bound is tight even for binary alphabet. We then investigate the problem on non-constant alphabets: we show that the known O(logn)O(\log n) bound is tight even for alphabets of logarithmic size, and provide tight bounds for some other important cases.Peer reviewe

    The effect of flexible parsing for dynamic dictionary-based data compression

    Full text link
    corecore