203 research outputs found

    Single-machine scheduling with a time-dependent learning effect

    Get PDF
    Author name used in this publication: J.-B. WangAuthor name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Worker scheduling with induced learning in a semi-on-line setting

    Get PDF
    Scheduling is a widely researched area with many interesting fields. The presented research deals with a maintenance area in which preventative maintenance and emergency jobs enter the system. Each job has varying processing time and must be scheduled. Through learning the operators are able to expand their knowledge which enables them to accomplish more tasks in a limited time. Two MINLP models have been presented, one for preventative maintenance jobs alone, and another including emergency jobs. The emergency model is semi-on-line as the arrival time is unknown. A corresponding heuristic method has also been developed to decrease the computational time of the MINLP models. The models and heuristic were tested in several areas to determine their flexibility. It has been demonstrated that the inclusion of learning has greatly improved the efficiency of the workers and of the system

    Defining accurate delivery dates in make to order job-shops managed by workload control

    Get PDF
    Workload control (WLC) is a lean oriented system that reduces queues and waiting times, by imposing a cap to the workload released to the shop floor. Unfortunately, WLC performance does not systematically outperform that of push operating systems, with undersaturated utilizations levels and optimized dispatching rules. To address this issue, many scientific works made use of complex job-release mechanisms and sophisticated dispatching rules, but this makes WLC too complicated for industrial applications. So, in this study, we propose a complementary approach. At first, to reduce queuing time variability, we introduce a simple WLC system; next we integrate it with a predictive tool that, based on the system state, can accurately forecast the total time needed to manufacture and deliver a job. Due to the non-linearity among dependent and independent variables, forecasts are made using a multi-layer-perceptron; yet, to have a comparison, the effectiveness of both linear and non-linear multi regression model has been tested too. Anyhow, if due dates are endogenous (i.e. set by the manufacturer), they can be directly bound to this internal estimate. Conversely, if they are exogenous (i.e. set by the customer), this approach may not be enough to minimize the percentage of tardy jobs. So, we also propose a negotiation scheme, which can be used to extend exogenous due dates considered too tight, with respect to the internal estimate. This is the main contribution of the paper, as it makes the forecasting approach truly useful in many industrial applications. To test our approach, we simulated a 6-machines job-shop controlled with WLC and equipped with the proposed forecasting system. Obtained performances, namely WIP levels, percentage of tardy jobs and negotiated due dates, were compared with those of a set classical benchmark, and demonstrated the robustness and the quality of our approach, which ensures minimal delays

    A Bicriteria Single Machine Scheduling With Exponential Sum-Of-Logarithm-Processing-Times Based Learning Effect

    Get PDF
    DergiPark: 231059tujesIn traditional scheduling problems, most literature assumes that the processing time of a job is fixed. However, there are many situations where the processing time of a job depends on the starting time or the position of the job in a sequence. In such situations, the actual processing time of a job may be more or less than its normal processing time if it is scheduled later. This phenomenon is known as the ‘‘learning effect’’. In this study, we introduce a exponential sum-of-logarithm-processingtimes based learning effect into a single-machine scheduling problem. We consider the following objective function minimize maximum lateness subject to the number of tardy jobs A non-linear programming model are developed for problem. Also the model is tested on an exampleÇizelgeleme literatürünün çoğunda işlerin işlem zamanları sabit kabul edilmiştir. Ancak işlerin işlem zamanlarında, başlama zamanı veya pozisyonuna bağlı olarak azalma görülebilmektedir. Bu olgu literatürde öğrenme etkisi olarak bilinmektedir. Bu çalışmada üssel işlem zaman taban toplamlı öğrenme etkili tek makineli çizelgeleme problemi ele alınacaktır. Ele alınan problemlerin amaç fonksiyonu geciken iş sayısı kısıtı altında maksimum gecikmeyi minimize etmektir. Problemi çözmek için doğrusal-olmayan programlama modeli geliştirilmiştir. Geliştirilen model örnek üzerinde uygulanmıştır

    A new perspective on Workload Control by measuring operating performances through an economic valorization

    Get PDF
    Workload Control (WLC) is a production planning and control system conceived to reduce queuing times of job-shop systems, and to offer a solution to the lead time syndrome; a critical issue that often bewilders make-to-order manufacturers. Nowadays, advantages of WLC are unanimously acknowledged, but real successful stories are still limited. This paper starts from the lack of a consistent way to assess performance of WLC, an important burden for its acceptance in the industry. As researchers often put more focus on the performance measures that better confirm their hypotheses, many measures, related to different WLC features, have emerged over years. However, this excess of measures may even mislead practitioners, in the evaluation of alternative production planning and control systems. To close this gap, we propose quantifying the main benefit of WLC in economic terms, as this is the easiest, and probably only way, to compare different and even conflicting performance measures. Costs and incomes are identified and used to develop an overall economic measure that can be used to evaluate, or even to fine tune, the operating features of WLC. The quality of our approach is finally demonstrated via simulation, considering the 6-machines job-shop scenario typically adopted as benchmark in technical literature

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques
    corecore