2,214 research outputs found

    Irreducible Triangulations are Small

    Get PDF
    A triangulation of a surface is \emph{irreducible} if there is no edge whose contraction produces another triangulation of the surface. We prove that every irreducible triangulation of a surface with Euler genus g1g\geq1 has at most 13g413g-4 vertices. The best previous bound was 171g72171g-72.Comment: v2: Referees' comments incorporate

    Irreducible triangulations of surfaces with boundary

    Get PDF
    A triangulation of a surface is irreducible if no edge can be contracted to produce a triangulation of the same surface. In this paper, we investigate irreducible triangulations of surfaces with boundary. We prove that the number of vertices of an irreducible triangulation of a (possibly non-orientable) surface of genus g>=0 with b>=0 boundaries is O(g+b). So far, the result was known only for surfaces without boundary (b=0). While our technique yields a worse constant in the O(.) notation, the present proof is elementary, and simpler than the previous ones in the case of surfaces without boundary

    Some Triangulated Surfaces without Balanced Splitting

    Full text link
    Let G be the graph of a triangulated surface Σ\Sigma of genus g2g\geq 2. A cycle of G is splitting if it cuts Σ\Sigma into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and g-k. It was conjectured that G contains a splitting cycle (Barnette '1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001) claiming that G should contain splitting cycles of every possible type.Comment: 15 pages, 7 figure

    Taut ideal triangulations of 3-manifolds

    Full text link
    A taut ideal triangulation of a 3-manifold is a topological ideal triangulation with extra combinatorial structure: a choice of transverse orientation on each ideal 2-simplex, satisfying two simple conditions. The aim of this paper is to demonstrate that taut ideal triangulations are very common, and that their behaviour is very similar to that of a taut foliation. For example, by studying normal surfaces in taut ideal triangulations, we give a new proof of Gabai's result that the singular genus of a knot in the 3-sphere is equal to its genus.Comment: Published in Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol4/paper12.abs.htm
    corecore