23 research outputs found

    On the asymptotic optimality of error bounds for some linear complementarity problems

    Get PDF
    We introduce strong B-matrices and strong B-Nekrasov matrices, for which some error bounds for linear complementarity problems are analyzed. In particular, it is proved that the bounds of García-Esnaola and Peña (Appl. Math. Lett. 22, 1071–1075, 2009) and of (Numer. Algor. 72, 435–445, 2016) are asymptotically optimal for strong B-matrices and strong B-Nekrasov matrices, respectively. Other comparisons with a bound of Li and Li (Appl. Math. Lett. 57, 108–113, 2016) are performed

    Numerical methods and accurate computations with structured matrices

    Get PDF
    Esta tesis doctoral es un compendio de 11 artículos científicos. El tema principal de la tesis es el Álgebra Lineal Numérica, con énfasis en dos clases de matrices estructuradas: las matrices totalmente positivas y las M-matrices. Para algunas subclases de estas matrices, es posible desarrollar algoritmos para resolver numéricamente varios de los problemas más comunes en álgebra lineal con alta precisión relativa independientemente del número de condición de la matriz. La clave para lograr cálculos precisos está en el uso de una parametrización diferente que represente la estructura especial de la matriz y en el desarrollo de algoritmos adaptados que trabajen con dicha parametrización.Las matrices totalmente positivas no singulares admiten una factorización única como producto de matrices bidiagonales no negativas llamada factorización bidiagonal. Si conocemos esta representación con alta precisión relativa, se puede utilizar para resolver ciertos sistemas de ecuaciones y para calcular la inversa, los valores propios y los valores singulares con alta precisión relativa. Nuestra contribución en este campo ha sido la obtención de la factorización bidiagonal con alta precisión relativa de matrices de colocación de polinomios de Laguerre generalizados, de matrices de colocación de polinomios de Bessel, de clases de matrices que generalizan la matriz de Pascal y de matrices de q-enteros. También hemos estudiado la extensión de varias propiedades óptimas de las matrices de colocación de B-bases normalizadas (que en particular son matrices totalmente positivas). En particular, hemos demostrado propiedades de optimalidad de las matrices de colocación del producto tensorial de B-bases normalizadas.Si conocemos las sumas de filas y las entradas extradiagonales de una M-matriz no singular diagonal dominante con alta precisión relativa, entonces podemos calcular su inversa, determinante y valores singulares también con alta precisión relativa. Hemos buscado nuevos métodos para lograr cálculos precisos con nuevas clases de M-matrices o matrices relacionadas. Hemos propuesto una parametrización para las Z-matrices de Nekrasov con entradas diagonales positivas que puede utilizarse para calcular su inversa y determinante con alta precisión relativa. También hemos estudiado la clase denominada B-matrices, que está muy relacionada con las M-matrices. Hemos obtenido un método para calcular los determinantes de esta clase con alta precisión relativa y otro para calcular los determinantes de las matrices de B-Nekrasov también con alta precisión relativa. Basándonos en la utilización de dos matrices de escalado que hemos introducido, hemos desarrollado nuevas cotas para la norma infinito de la inversa de una matriz de Nekrasov y para el error del problema de complementariedad lineal cuando su matriz asociada es de Nekrasov. También hemos obtenido nuevas cotas para la norma infinito de las inversas de Bpi-matrices, una clase que extiende a las B-matrices, y las hemos utilizado para obtener nuevas cotas del error para el problema de complementariedad lineal cuya matriz asociada es una Bpi-matriz. Algunas clases de matrices han sido generalizadas al caso de mayor dimensión para desarrollar una teoría para tensores extendiendo la conocida para el caso matricial. Por ejemplo, la definición de la clase de las B-matrices ha sido extendida a la clase de B-tensores, dando lugar a un criterio sencillo para identificar una nueva clase de tensores definidos positivos. Hemos propuesto una extensión de la clase de las Bpi-matrices a Bpi-tensores, definiendo así una nueva clase de tensores definidos positivos que puede ser identificada en base a un criterio sencillo basado solo en cálculos que involucran a las entradas del tensor. Finalmente, hemos caracterizado los casos en los que las matrices de Toeplitz tridiagonales son P-matrices y hemos estudiado cuándo pueden ser representadas en términos de una factorización bidiagonal que sirve como parametrización para lograr cálculos con alta precisión relativa.<br /

    Complementarity Problem With Nekrasov ZZ tensor

    Full text link
    It is worth knowing that a particular tensor class belongs to PP-tensor which ensures the compactness to solve tensor complementarity problem (TCP). In this study, we propose a new class of tensor, Nekrasov ZZ tensor, in the context of the tensor complementarity problem. We show that the class of PP-tensor contains the class of even ordered Nekrasov ZZ tensors with positive diagonal elements. In this context, we propose a procedure by which a Nekrasov ZZ tensor can be transformed into a tensor which is diagonally dominant. Keywords: Diagonally dominant tensor, Nekrasov tensors, Nonsingular HH tensor, Nekrasov ZZ tensor, PP-tensors, Tensor complementarity proble

    Accurate inverses of Nekrasov Z-matrices

    Get PDF
    We present a parametrization of a Nekrasov Z-matrix that allows us to compute its inverse with high relative accuracy. Numerical examples illustrating the accuracy of the method are included

    Some new results for B1 B_1 -matrices

    Get PDF
    The class of B1 B_1 -matrices is a subclass of P P -matrices and introduced as a generalization of B B -matrices. In this paper, we present several properties for B1 B_1 -matrices. Then, the infinity norm upper bound for the inverse of B1 B_1 -matrices is obtained. Furthermore, the error bound for the linear complementarity problem of B1 B_1 -matrices is presented. Finally, some numerical examples are given to illustrate our results

    Hidden Citations Obscure True Impact in Science

    Full text link
    References, the mechanism scientists rely on to signal previous knowledge, lately have turned into widely used and misused measures of scientific impact. Yet, when a discovery becomes common knowledge, citations suffer from obliteration by incorporation. This leads to the concept of hidden citation, representing a clear textual credit to a discovery without a reference to the publication embodying it. Here, we rely on unsupervised interpretable machine learning applied to the full text of each paper to systematically identify hidden citations. We find that for influential discoveries hidden citations outnumber citation counts, emerging regardless of publishing venue and discipline. We show that the prevalence of hidden citations is not driven by citation counts, but rather by the degree of the discourse on the topic within the text of the manuscripts, indicating that the more discussed is a discovery, the less visible it is to standard bibliometric analysis. Hidden citations indicate that bibliometric measures offer a limited perspective on quantifying the true impact of a discovery, raising the need to extract knowledge from the full text of the scientific corpus
    corecore