236 research outputs found

    On d-graceful labelings

    Full text link
    In this paper we introduce a generalization of the well known concept of a graceful labeling. Given a graph G with e=dm edges, we call d-graceful labeling of G an injective function from V(G) to the set {0,1,2,..., d(m+1)-1} such that {|f(x)-f(y)| | [x,y]\in E(G)} ={1,2,3,...,d(m+1)-1}-{m+1,2(m+1),...,(d-1)(m+1)}. In the case of d=1 and of d=e we find the classical notion of a graceful labeling and of an odd graceful labeling, respectively. Also, we call d-graceful \alpha-labeling of a bipartite graph G a d-graceful labeling of G with the property that its maximum value on one of the two bipartite sets does not reach its minimum value on the other one. We show that these new concepts allow to obtain certain cyclic graph decompositions. We investigate the existence of d-graceful \alpha-labelings for several classes of bipartite graphs, completely solving the problem for paths and stars and giving partial results about cycles of even length and ladders.Comment: In press on Ars Combi

    On the quasi-isometric rigidity of graphs of surface groups

    Full text link
    Let Γ\Gamma be a word hyperbolic group with a cyclic JSJ decomposition that has only rigid vertex groups, which are all fundamental groups of closed surface groups. We show that any group HH quasi-isometric to Γ\Gamma is abstractly commensurable with Γ\Gamma.Comment: 54 pages, 10 figures, comments welcom

    Applications of Graphical Condensation for Enumerating Matchings and Tilings

    Get PDF
    A technique called graphical condensation is used to prove various combinatorial identities among numbers of (perfect) matchings of planar bipartite graphs and tilings of regions. Graphical condensation involves superimposing matchings of a graph onto matchings of a smaller subgraph, and then re-partitioning the united matching (actually a multigraph) into matchings of two other subgraphs, in one of two possible ways. This technique can be used to enumerate perfect matchings of a wide variety of bipartite planar graphs. Applications include domino tilings of Aztec diamonds and rectangles, diabolo tilings of fortresses, plane partitions, and transpose complement plane partitions.Comment: 25 pages; 21 figures Corrected typos; Updated references; Some text revised, but content essentially the sam

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    Faces of Birkhoff Polytopes

    Full text link
    The Birkhoff polytope B(n) is the convex hull of all (n x n) permutation matrices, i.e., matrices where precisely one entry in each row and column is one, and zeros at all other places. This is a widely studied polytope with various applications throughout mathematics. In this paper we study combinatorial types L of faces of a Birkhoff polytope. The Birkhoff dimension bd(L) of L is the smallest n such that B(n) has a face with combinatorial type L. By a result of Billera and Sarangarajan, a combinatorial type L of a d-dimensional face appears in some B(k) for k less or equal to 2d, so bd(L) is at most d. We will characterize those types whose Birkhoff dimension is at least 2d-3, and we prove that any type whose Birkhoff dimension is at least d is either a product or a wedge over some lower dimensional face. Further, we computationally classify all d-dimensional combinatorial types for d between 2 and 8.Comment: 29 page
    corecore