4,438 research outputs found

    Subdivisions with Distance Constraints in Large Graphs

    Get PDF
    In this dissertation we are concerned with sharp degree conditions that guarantee the existence of certain types of subdivisions in large graphs. Of particular interest are subdivisions with a certain number of arbitrarily specified vertices and with prescribed path lengths. Our non-standard approach makes heavy use of the Regularity Lemma (Szemerédi, 1978), the Blow-Up Lemma (Komlós, Sárkózy, and Szemerédi, 1994), and the minimum degree panconnectivity criterion (Williamson, 1977).Sharp minimum degree criteria for a graph G to be H-linked have recently been discovered. We define (H,w,d)-linkage, a condition stronger than H-linkage, by including a weighting function w consisting of required lengths for each edge-path of a desired H-subdivision. We establish sharp minimum degree criteria for a large graph G to be (H,w,d)-linked for all nonnegative d. We similarly define the weaker condition (H,S,w,d)-semi-linkage, where S denotes the set of vertices of H whose corresponding vertices in an H-subdivision are arbitrarily specified. We prove similar sharp minimum degree criteria for a large graph G to be (H,S,w,d)-semi-linked for all nonnegativeWe also examine path coverings in large graphs, which could be seen as a special case of (H,S,w)-semi-linkage. In 2000, Enomoto and Ota conjectured that a graph G of order n with degree sum σ2(G) satisfying σ2(G) \u3e n + k - 2 may be partitioned into k paths, each of prescribed order and with a specified starting vertex. We prove the Enomoto-Ota Conjecture for graphs of sufficiently large order

    Precise Partitions Of Large Graphs

    Get PDF
    First by using an easy application of the Regularity Lemma, we extend some known results about cycles of many lengths to include a specified edge on the cycles. The results in this chapter will help us in rest of this thesis. In 2000, Enomoto and Ota posed a conjecture on the existence of path decomposition of graphs with fixed start vertices and fixed lengths. We prove this conjecture when |G| is large. Our proof uses the Regularity Lemma along with several extremal lemmas, concluding with an absorbing argument to retrieve misbehaving vertices. Furthermore, sharp minimum degree and degree sum conditions are proven for the existance of a Hamiltonian cycle passing through specified vertices with prescribed distances between them in large graphs. Finally, we prove a sharp connectivity and degree sum condition for the existence of a subdivision of a multigraph in which some of the vertices are specified and the distance between each pair of vertices in the subdivision is prescribed (within one)

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2n−4n−2)≈4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)⊂P(n2)−1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2n−42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2n−4n−2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2n−3n−2(n−6n−3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    The directed 2-linkage problem with length constraints

    Get PDF
    Postponed access: the file will be available after 2022-01-15acceptedVersio

    On the Number of Embeddings of Minimally Rigid Graphs

    Get PDF
    Rigid frameworks in some Euclidean space are embedded graphs having a unique local realization (up to Euclidean motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2n−4n−2)≈4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.28n2.28^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley--Menger variety CM2,n(C)⊂P(n2)−1(C){\it CM}^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2n−42n-4 hyperplanes yields at most deg(CM2,n)deg({\it CM}^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=12(2n−4n−2)D^{2,n}=\frac{1}{2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular, we show that it leads to an upper bound of 2D3,n=(2n−3/(n−2))(2n−6n−3)2 D^{3,n}= {({2^{n-3}}/({n-2}})){{2n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 11-skeleton of a simplicial polyhedron, up to rigid motions. Our technique can also be adapted to the non-Euclidean case

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure
    • …
    corecore