300 research outputs found

    Asymptotic cohomological functions on projective varieties

    Full text link
    In this paper we define certain analogues of the volume of a divisor - called asymptotic cohomological functions - and investigate their behaviour on the Neron--Severi space. We establish that asymptotic cohomological functions are invariant with respect to the numerical equivalence of divisors, and that they give rise to continuous functions on the real Neron--Severi space. To illustrate the theory, we work out these invariants for abelian varieties, smooth surfaces, and certain homogeneous spaces.Comment: 32 pages, 3 figure

    Triangulated categories of mixed motives

    Full text link
    This book discusses the construction of triangulated categories of mixed motives over a noetherian scheme of finite dimension, extending Voevodsky's definition of motives over a field. In particular, it is shown that motives with rational coefficients satisfy the formalism of the six operations of Grothendieck. This is achieved by studying descent properties of motives, as well as by comparing different presentations of these categories, following and extending insights and constructions of Deligne, Beilinson, Bloch, Thomason, Gabber, Levine, Morel, Voevodsky, Ayoub, Spitzweck, R\"ondigs, {\O}stv{\ae}r, and others. In particular, the relation of motives with KK-theory is addressed in full, and we prove the absolute purity theorem with rational coefficients, using Quillen's localization theorem in algebraic KK-theory together with a variation on the Grothendieck-Riemann-Roch theorem. Using resolution of singularities via alterations of de Jong-Gabber, this leads to a version of Grothendieck-Verdier duality for constructible motivic sheaves with rational coefficients over rather general base schemes. We also study versions with integral coefficients, constructed via sheaves with transfers, for which we obtain partial results. Finally, we associate to any mixed Weil cohomology a system of categories of coefficients and well behaved realization functors, establishing a correspondence between mixed Weil cohomologies and suitable systems of coefficients. The results of this book have already served as ground reference in many subsequent works on motivic sheaves and their realizations, and pointers to the most recent developments of the theory are given in the introduction.Comment: This is the final version. To appear in the series Springer Monographs in Mathematic

    On the Kottwitz conjecture for local Shimura varieties

    Full text link
    Kottwitz’s conjecture describes the contribution of a supercuspidal represention to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. Using a Lefschetz-Verdier fixedpoint formula, we prove a weakened generalized version of Kottwitz’s conjecture. The weakening comes from ignoring the action of the Weil group and only considering the actions of the groups G and Jb up to non-elliptic representations. The generalization is that we allow arbitrary connected reductive groups G and non-minuscule coweights µ

    An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization

    Full text link
    In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring RR, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over RR. For a finitely generated maximal ideal m\mathfrak{m} in a commutative ring RR we show how solving (in)homogeneous linear systems over RmR_{\mathfrak{m}} can be reduced to solving associated systems over RR. Hence, the computability of RR implies that of RmR_{\mathfrak{m}}. As a corollary we obtain the computability of the category of finitely presented RmR_{\mathfrak{m}}-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.Comment: Fixed a typo in the proof of Lemma 4.3 spotted by Sebastian Posu

    The present moment in quantum cosmology: challenges to the arguments for the elimination of time

    Get PDF
    Barbour, Hawking, Misner and others have argued that time cannot play an essential role in the formulation of a quantum theory of cosmology. Here we present three challenges to their arguments, taken from works and remarks by Kauffman, Markopoulou and Newman. These can be seen to be based on two principles: that every observable in a theory of cosmology should be measurable by some observer inside the universe, and all mathematical constructions necessary to the formulation of the theory should be realizable in a finite time by a computer that fits inside the universe. We also briefly discuss how a cosmological theory could be formulated so it is in agreement with these principles.Comment: This is a slightly revised version of an essay published in Time and the Instant, Robin Durie (ed.) Manchester: Clinamen Press, 200
    • …
    corecore