1,239 research outputs found

    Some Concerns Regarding Ternary-relation Semantics and Truth-theoretic Semantics in General

    Get PDF
    This paper deals with a collection of concerns that, over a period of time, led the author away from the Routley–Meyer semantics, and towards proof- theoretic approaches to relevant logics, and indeed to the weak relevant logic MC of meaning containment

    The Relevant Logic E and Some Close Neighbours: A Reinterpretation

    Get PDF
    This paper has two aims. First, it sets out an interpretation of the relevant logic E of relevant entailment based on the theory of situated inference. Second, it uses this interpretation, together with Anderson and Belnap’s natural deduc- tion system for E, to generalise E to a range of other systems of strict relevant implication. Routley–Meyer ternary relation semantics for these systems are produced and completeness theorems are proven

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089

    Proof Theory of Finite-valued Logics

    Get PDF
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics

    Normalisation Control in Deep Inference via Atomic Flows

    Get PDF
    We introduce `atomic flows': they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut elimination as a special case. We operate in deep inference, which is more general than other syntactic paradigms, and where normalisation is more difficult to control. We argue that atomic flows are a significant technical advance for normalisation theory, because 1) the technique they support is largely independent of syntax; 2) indeed, it is largely independent of logical inference rules; 3) they constitute a powerful geometric formalism, which is more intuitive than syntax
    • …
    corecore