248 research outputs found

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    Completeness of Flat Coalgebraic Fixpoint Logics

    Full text link
    Modal fixpoint logics traditionally play a central role in computer science, in particular in artificial intelligence and concurrency. The mu-calculus and its relatives are among the most expressive logics of this type. However, popular fixpoint logics tend to trade expressivity for simplicity and readability, and in fact often live within the single variable fragment of the mu-calculus. The family of such flat fixpoint logics includes, e.g., LTL, CTL, and the logic of common knowledge. Extending this notion to the generic semantic framework of coalgebraic logic enables covering a wide range of logics beyond the standard mu-calculus including, e.g., flat fragments of the graded mu-calculus and the alternating-time mu-calculus (such as alternating-time temporal logic ATL), as well as probabilistic and monotone fixpoint logics. We give a generic proof of completeness of the Kozen-Park axiomatization for such flat coalgebraic fixpoint logics.Comment: Short version appeared in Proc. 21st International Conference on Concurrency Theory, CONCUR 2010, Vol. 6269 of Lecture Notes in Computer Science, Springer, 2010, pp. 524-53

    Pseudodeterministic constructions in subexponential time

    Get PDF
    We study pseudodeterministic constructions, i.e., randomized algorithms which output the same solution on most computation paths. We establish unconditionally that there is an infinite sequence {pn}n∈N of increasing primes and a randomized algorithm A running in expected sub-exponential time such that for each n, on input 1|pn|, A outputs pn with probability 1. In other words, our result provides a pseudodeterministic construction of primes in sub-exponential time which works infinitely often. This result follows from a much more general theorem about pseudodeterministic constructions. A property Q ⊆ {0, 1}* is γ-dense if for large enough n, |Q ⋂ {0, 1}n| ≥ γ2n. We show that for each c > 0 at least one of the following holds: (1) There is a pseudodeterministic polynomial time construction of a family {Hn} of sets, Hn ⊆ {0, 1}n, such that for each (1=nc)-dense property Q ∈ DTIME(n^c) and every large enough n, Hn ⋂ Q ≠ ∅; or (2) There is a deterministic sub-exponential time construction of a family {H'n} of sets, H'n ⊆ {0, 1}n, such that for each (1/n^c)-dense property Q ∈ DTIME(n^c) and for infinitely many values of n, H'n ⋂ Q ≠ ∅. We provide further algorithmic applications that might be of independent interest. Perhaps intriguingly, while our main results are unconditional, they have a non-constructive element, arising from a sequence of applications of the hardness versus randomness paradigm.</p
    • …
    corecore