2,209 research outputs found

    Note Value Recognition for Piano Transcription Using Markov Random Fields

    Get PDF
    This paper presents a statistical method for use in music transcription that can estimate score times of note onsets and offsets from polyphonic MIDI performance signals. Because performed note durations can deviate largely from score-indicated values, previous methods had the problem of not being able to accurately estimate offset score times (or note values) and thus could only output incomplete musical scores. Based on observations that the pitch context and onset score times are influential on the configuration of note values, we construct a context-tree model that provides prior distributions of note values using these features and combine it with a performance model in the framework of Markov random fields. Evaluation results show that our method reduces the average error rate by around 40 percent compared to existing/simple methods. We also confirmed that, in our model, the score model plays a more important role than the performance model, and it automatically captures the voice structure by unsupervised learning

    Joint Multi-Pitch Detection Using Harmonic Envelope Estimation for Polyphonic Music Transcription

    Get PDF
    In this paper, a method for automatic transcription of music signals based on joint multiple-F0 estimation is proposed. As a time-frequency representation, the constant-Q resonator time-frequency image is employed, while a novel noise suppression technique based on pink noise assumption is applied in a preprocessing step. In the multiple-F0 estimation stage, the optimal tuning and inharmonicity parameters are computed and a salience function is proposed in order to select pitch candidates. For each pitch candidate combination, an overlapping partial treatment procedure is used, which is based on a novel spectral envelope estimation procedure for the log-frequency domain, in order to compute the harmonic envelope of candidate pitches. In order to select the optimal pitch combination for each time frame, a score function is proposed which combines spectral and temporal characteristics of the candidate pitches and also aims to suppress harmonic errors. For postprocessing, hidden Markov models (HMMs) and conditional random fields (CRFs) trained on MIDI data are employed, in order to boost transcription accuracy. The system was trained on isolated piano sounds from the MAPS database and was tested on classic and jazz recordings from the RWC database, as well as on recordings from a Disklavier piano. A comparison with several state-of-the-art systems is provided using a variety of error metrics, where encouraging results are indicated

    VGM-RNN: Recurrent Neural Networks for Video Game Music Generation

    Get PDF
    The recent explosion of interest in deep neural networks has affected and in some cases reinvigorated work in fields as diverse as natural language processing, image recognition, speech recognition and many more. For sequence learning tasks, recurrent neural networks and in particular LSTM-based networks have shown promising results. Recently there has been interest – for example in the research by Google’s Magenta team – in applying so-called “language modeling” recurrent neural networks to musical tasks, including for the automatic generation of original music. In this work we demonstrate our own LSTM-based music language modeling recurrent network. We show that it is able to learn musical features from a MIDI dataset and generate output that is musically interesting while demonstrating features of melody, harmony and rhythm. We source our dataset from VGMusic.com, a collection of user-submitted MIDI transcriptions of video game songs, and attempt to generate output which emulates this kind of music

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes

    A supervised classification approach for note tracking in polyphonic piano transcription

    Get PDF
    In the field of Automatic Music Transcription, note tracking systems constitute a key process in the overall success of the task as they compute the expected note-level abstraction out of a frame-based pitch activation representation. Despite its relevance, note tracking is most commonly performed using a set of hand-crafted rules adjusted in a manual fashion for the data at issue. In this regard, the present work introduces an approach based on machine learning, and more precisely supervised classification, that aims at automatically inferring such policies for the case of piano music. The idea is to segment each pitch band of a frame-based pitch activation into single instances which are subsequently classified as active or non-active note events. Results using a comprehensive set of supervised classification strategies on the MAPS piano data-set report its competitiveness against other commonly considered strategies for note tracking as well as an improvement of more than +10% in terms of F-measure when compared to the baseline considered for both frame-level and note-level evaluations.This research work is partially supported by Universidad de Alicante through the FPU program [UAFPU2014–5883] and the Spanish Ministerio de Economía y Competitividad through project TIMuL [No. TIN2013–48152–C2–1–R, supported by EU FEDER funds]. EB is supported by a UK RAEng Research Fellowship [grant number RF/128]
    • …
    corecore