1,601 research outputs found

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Scalable Hash Tables

    Get PDF
    The term scalability with regards to this dissertation has two meanings: It means taking the best possible advantage of the provided resources (both computational and memory resources) and it also means scaling data structures in the literal sense, i.e., growing the capacity, by “rescaling” the table. Scaling well to computational resources implies constructing the fastest best per- forming algorithms and data structures. On today’s many-core machines the best performance is immediately associated with parallelism. Since CPU frequencies have stopped growing about 10-15 years ago, parallelism is the only way to take ad- vantage of growing computational resources. But for data structures in general and hash tables in particular performance is not only linked to faster computations. The most execution time is actually spent waiting for memory. Thus optimizing data structures to reduce the amount of memory accesses or to take better advantage of the memory hierarchy especially through predictable access patterns and prefetch- ing is just as important. In terms of scaling the size of hash tables we have identified three domains where scaling hash-based data structures have been lacking previously, i.e., space effi- cient growing, concurrent hash tables, and Approximate Membership Query data structures (AMQ-filter). Throughout this dissertation, we describe the problems in these areas and develop efficient solutions. We highlight three different libraries that we have developed over the course of this dissertation, each containing mul- tiple implementations that have shown throughout our testing to be among the best implementations in their respective domains. In this composition they offer a comprehensive toolbox that can be used to solve many kinds of hashing related problems or to develop individual solutions for further ones. DySECT is a library for space efficient hash tables specifically growing space effi- cient hash tables that scale with their input size. It contains the namesake DySECT data structure in addition to a number of different probing and cuckoo based im- plementations. Growt is a library for highly efficient concurrent hash tables. It contains a very fast base table and a number of extensions to adapt this table to match any purpose. All extension can be combined to create a variety of different interfaces. In our extensive experimental evaluation, each adaptation has shown to be among the best hash tables for their specific purpose. Lpqfilter is a library for concurrent approximate membership query (AMQ) data structures. It contains some original data structures, like the linear probing quotient filter, as well as some novel approaches to dynamically sized quotient filters

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Regular and almost universal hashing: an efficient implementation

    Get PDF
    Random hashing can provide guarantees regarding the performance of data structures such as hash tables---even in an adversarial setting. Many existing families of hash functions are universal: given two data objects, the probability that they have the same hash value is low given that we pick hash functions at random. However, universality fails to ensure that all hash functions are well behaved. We further require regularity: when picking data objects at random they should have a low probability of having the same hash value, for any fixed hash function. We present the efficient implementation of a family of non-cryptographic hash functions (PM+) offering good running times, good memory usage as well as distinguishing theoretical guarantees: almost universality and component-wise regularity. On a variety of platforms, our implementations are comparable to the state of the art in performance. On recent Intel processors, PM+ achieves a speed of 4.7 bytes per cycle for 32-bit outputs and 3.3 bytes per cycle for 64-bit outputs. We review vectorization through SIMD instructions (e.g., AVX2) and optimizations for superscalar execution.Comment: accepted for publication in Software: Practice and Experience in September 201

    More Analysis of Double Hashing for Balanced Allocations

    Full text link
    With double hashing, for a key xx, one generates two hash values f(x)f(x) and g(x)g(x), and then uses combinations (f(x)+ig(x))modn(f(x) +i g(x)) \bmod n for i=0,1,2,...i=0,1,2,... to generate multiple hash values in the range [0,n1][0,n-1] from the initial two. For balanced allocations, keys are hashed into a hash table where each bucket can hold multiple keys, and each key is placed in the least loaded of dd choices. It has been shown previously that asymptotically the performance of double hashing and fully random hashing is the same in the balanced allocation paradigm using fluid limit methods. Here we extend a coupling argument used by Lueker and Molodowitch to show that double hashing and ideal uniform hashing are asymptotically equivalent in the setting of open address hash tables to the balanced allocation setting, providing further insight into this phenomenon. We also discuss the potential for and bottlenecks limiting the use this approach for other multiple choice hashing schemes.Comment: 13 pages ; current draft ; will be submitted to conference shortl

    Using Hashing to Solve the Dictionary Problem (In External Memory)

    Full text link
    We consider the dictionary problem in external memory and improve the update time of the well-known buffer tree by roughly a logarithmic factor. For any \lambda >= max {lg lg n, log_{M/B} (n/B)}, we can support updates in time O(\lambda / B) and queries in sublogarithmic time, O(log_\lambda n). We also present a lower bound in the cell-probe model showing that our data structure is optimal. In the RAM, hash tables have been used to solve the dictionary problem faster than binary search for more than half a century. By contrast, our data structure is the first to beat the comparison barrier in external memory. Ours is also the first data structure to depart convincingly from the indivisibility paradigm
    corecore