4,050 research outputs found

    Fully Automatic Expression-Invariant Face Correspondence

    Full text link
    We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    3D Facial landmark detection under large yaw and expression variations

    Get PDF
    A 3D landmark detection method for 3D facial scans is presented and thoroughly evaluated. The main contribution of the presented method is the automatic and pose-invariant detection of landmarks on 3D facial scans under large yaw variations (that often result in missing facial data), and its robustness against large facial expressions. Three-dimensional information is exploited by using 3D local shape descriptors to extract candidate landmark points. The shape descriptors include the shape index, a continuous map of principal curvature values of a 3D object’s surface, and spin images, local descriptors of the object’s 3D point distribution. The candidate landmarks are identified and labeled by matching them with a Facial Landmark Model (FLM) of facial anatomical landmarks. The presented method is extensively evaluated against a variety of 3D facial databases and achieves state-of-the-art accuracy (4.5-6.3 mm mean landmark localization error), considerably outperforming previous methods, even when tested with the most challenging data

    Random Forests for Real Time 3D Face Analysis

    Get PDF
    We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinec

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    Face pose estimation in monocular images

    Get PDF
    People use orientation of their faces to convey rich, inter-personal information. For example, a person will direct his face to indicate who the intended target of the conversation is. Similarly in a conversation, face orientation is a non-verbal cue to listener when to switch role and start speaking, and a nod indicates that a person has understands, or agrees with, what is being said. Further more, face pose estimation plays an important role in human-computer interaction, virtual reality applications, human behaviour analysis, pose-independent face recognition, driver s vigilance assessment, gaze estimation, etc. Robust face recognition has been a focus of research in computer vision community for more than two decades. Although substantial research has been done and numerous methods have been proposed for face recognition, there remain challenges in this field. One of these is face recognition under varying poses and that is why face pose estimation is still an important research area. In computer vision, face pose estimation is the process of inferring the face orientation from digital imagery. It requires a serious of image processing steps to transform a pixel-based representation of a human face into a high-level concept of direction. An ideal face pose estimator should be invariant to a variety of image-changing factors such as camera distortion, lighting condition, skin colour, projective geometry, facial hairs, facial expressions, presence of accessories like glasses and hats, etc. Face pose estimation has been a focus of research for about two decades and numerous research contributions have been presented in this field. Face pose estimation techniques in literature have still some shortcomings and limitations in terms of accuracy, applicability to monocular images, being autonomous, identity and lighting variations, image resolution variations, range of face motion, computational expense, presence of facial hairs, presence of accessories like glasses and hats, etc. These shortcomings of existing face pose estimation techniques motivated the research work presented in this thesis. The main focus of this research is to design and develop novel face pose estimation algorithms that improve automatic face pose estimation in terms of processing time, computational expense, and invariance to different conditions

    3D and Thermo-Face Fusion

    Get PDF
    corecore