85 research outputs found

    Combined scaled manhattan distance and mean of horner’s rules for keystroke dynamic authentication

    Get PDF
    Account security was determined by how well the security techniques applied by the system were used. There had been many security methods that guaranteed the security of their accounts, one of which was Keystroke Dynamic Authentication. Keystroke Dynamic Authentication was an authentication technique that utilized the typing habits of a person as a security measurement tool for the user account. From several research, the average use in the Keystroke Dynamic Authentication classification is not suitable, because a user's typing speed will change over time, maybe faster or slower depending on certain conditions. So, in this research, we proposed a combination of the Scaled Manhattan Distance method and the Mean of Horner's Rules as a classification method between the user and attacker against the Keystroke Dynamic Authentication. The reason for using Mean of Horner’s Rules can adapt to changes in values over time and based on the results can improve the accuracy of the previous method

    Keystroke and Touch-dynamics Based Authentication for Desktop and Mobile Devices

    Get PDF
    The most commonly used system on desktop computers is a simple username and password approach which assumes that only genuine users know their own credentials. Once broken, the system will accept every authentication trial using compromised credentials until the breach is detected. Mobile devices, such as smart phones and tablets, have seen an explosive increase for personal computing and internet browsing. While the primary mode of interaction in such devices is through their touch screen via gestures, the authentication procedures have been inherited from keyboard-based computers, e.g. a Personal Identification Number, or a gesture based password, etc.;This work provides contributions to advance two types of behavioral biometrics applicable to desktop and mobile computers: keystroke dynamics and touch dynamics. Keystroke dynamics relies upon the manner of typing rather than what is typed to authenticate users. Similarly, a continual touch based authentication that actively authenticates the user is a more natural alternative for mobile devices.;Within the keystroke dynamics domain, habituation refers to the evolution of user typing pattern over time. This work details the significant impact of habituation on user behavior. It offers empirical evidence of the significant impact on authentication systems attempting to identify a genuine user affected by habituation, and the effect of habituation on similarities between users and impostors. It also proposes a novel effective feature for the keystroke dynamics domain called event sequences. We show empirically that unlike features from traditional keystroke dynamics literature, event sequences are independent of typing speed. This provides a unique advantage in distinguishing between users when typing complex text.;With respect to touch dynamics, an immense variety of mobile devices are available for consumers, differing in size, aspect ratio, operating systems, hardware and software specifications to name a few. An effective touch based authentication system must be able to work with one user model across a spectrum of devices and user postures. This work uses a locally collected dataset to provide empirical evidence of the significant effect of posture, device size and manufacturer on user authentication performance. Based on the results of this strand of research, we suggest strategies to improve the performance of continual touch based authentication systems

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Adversarial Activity Detection and Prediction Using Behavioral Biometrics

    Get PDF
    Behavioral biometrics can be used in different security applications like authentication, identification, etc. One of the trending applications is predicting future activities of people and guessing whether they will engage in malicious activities in the future. In this research, we study the possibility of predicting future activities and propose novel methods for near-future activity prediction. First, we study gait signals captured using smartphone accelerometer sensor and build a model to predict a future gait signal. Activity recognition using body movements captured from mobile phone sensors has been a major point of interest in recent research. Data that is being continuously read from mobile sensors can be used to recognize user activity. We propose a model for predicting human body movements based on the previous activity that has been read from sensors and continuously updating our prediction as new data becomes available. Our results show that our model can predict the future movement signal with a high accuracy that can contribute to several applications in the area. Second, we study keystroke acoustics and build a model for predicting future activities of the users by recording their keystrokes audio. Using keystroke acoustics to predict typed text has significant advantages, such as being recorded covertly from a distance and requiring no physical access to the computer system. Recently, some studies have been done on keystroke acoustics, however, to the best of our knowledge none have used them to predict adversarial activities. On a dataset of two million keystrokes consisting of seven adversarial and one benign activity, we use a signal processing approach to extract keystrokes from the audio and a clustering method to recover the typed letters followed by a text recovery module to regenerate the typed words. Furthermore, we use a neural network model to classify the benign and adversarial activities and achieve significant results: (1) we extract individual keystroke sounds from the raw audio with 91% accuracy and recover words from audio recordings in a noisy environment with 71% average top-10 accuracy. (2) We classify adversarial activities with 93% to 98% average accuracy under different operating scenarios. Third, we study the correlation between the personality traits of users with their keystroke and mouse dynamics. Even with the availability of multiple interfaces, such as voice, touch, etc., keyboard and mouse remain the primary interfaces to a computer. Any insights on the relation between keyboard and mouse dynamics with the personality type of the users can provide foundations for various applications, such as advertisement, social media, etc. We use a dataset of keystroke and mouse dynamics collected from 104 users together with their responses to two personality tests to analyze how their interaction with the computer relates to their personality. Our findings show that there are considerable trends and patterns in keystroke and mouse dynamics that are correlated with each personality type

    Applying empirical thresholding algorithm for a keystroke dynamics based authentication system

    Get PDF
    Through the application of a password-based authentication technique, users are granted permission to access a secure system when the username and password matches with that logged in database of the system. Furthermore, anyone who provides the correct username and password of a valid user will be able to log in to the secure network. In current circumstances, impostors can hack the system to obtain a user’s password, while it has also been easy to find out a person’s private password. Thus, the existing structure is exceptionally flawed. One way to strengthen the password-based authentication technique, is by keystroke dynamics. In the proposed keystroke dynamics based authentication system, despite the password match, the similarity between the typing pattern of the typed password and password samples in the training database are verified. The timing features of the user’s keystroke dynamics are collected to calculate the threshold values. In this paper, a novel algorithm is proposed to authenticate the legal users based on the empirical threshold values. The first step involves the extraction of timing features from the typed password samples. The password training database for each user is constructed using the extracted features. Moreover, the empirical threshold limits are calculated from the timing features in the database. The second step involves user authentication by applying these threshold values. The experimental analyses are carried out in MATLAB simulation, and the results indicate a significant reduction in false rejection rate and false acceptance rate. The proposed methodology yields very low equal error rate of 0.5% and the authentication accuracy of 99.5%, which are considered suitable and efficient for real-time implementation. The proposed method can be a useful resource for identifying illegal invasion and is valuable in securing the system as a correlative or substitute form of client validation

    Handgrip pattern recognition

    Get PDF
    There are numerous tragic gun deaths each year. Making handguns safer by personalizing them could prevent most such tragedies. Personalized handguns, also called smart guns, are handguns that can only be fired by the authorized user. Handgrip pattern recognition holds great promise in the development of the smart gun. Two algorithms, static analysis algorithm and dynamic analysis algorithm, were developed to find the patterns of a person about how to grasp a handgun. The static analysis algorithm measured 160 subjects\u27 fingertip placements on the replica gun handle. The cluster analysis and discriminant analysis were applied to these fingertip placements, and a classification tree was built to find the fingertip pattern for each subject. The dynamic analysis algorithm collected and measured 24 subjects\u27 handgrip pressure waveforms during the trigger pulling stage. A handgrip recognition algorithm was developed to find the correct pattern. A DSP box was built to make the handgrip pattern recognition to be done in real time. A real gun was used to evaluate the handgrip recognition algorithm. The result was shown and it proves that such a handgrip recognition system works well as a prototype

    Identifying emotional states through keystroke dynamics

    Get PDF
    The ability to recognize emotions is an important part of building intelligent computers. Extracting the emotional aspects of a situation could provide computers with a rich context to make appropriate decisions about how to interact with the user or adapt the system response. The problem that we address in this thesis is that the current methods of determining user emotion have two issues: the equipment that is required is expensive, and the majority of these sensors are invasive to the user. These problems limit the real-world applicability of existing emotion-sensing methods because the equipment costs limit the availability of the technology, and the obtrusive nature of the sensors are not realistic in typical home or office settings. Our solution is to determine user emotions by analyzing the rhythm of an individual‘s typing patterns on a standard keyboard. Our keystroke dynamics approach would allow for the uninfluenced determination of emotion using technology that is in widespread use today. We conducted a field study where participants‘ keystrokes were collected in situ and their emotional states were recorded via self reports. Using various data mining techniques, we created models based on 15 different emotional states. With the results from our cross-validation, we identify our best-performing emotional state models as well as other emotional states that can be explored in future studies. We also provide a set of recommendations for future analysis on the existing data set as well as suggestions for future data collection and experimentation
    • …
    corecore