890 research outputs found

    A Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images

    Full text link
    In line with the development of Industry 4.0, surface defect detection/anomaly detection becomes a topical subject in the industry field. Improving efficiency as well as saving labor costs has steadily become a matter of great concern in practice, where deep learning-based algorithms perform better than traditional vision inspection methods in recent years. While existing deep learning-based algorithms are biased towards supervised learning, which not only necessitates a huge amount of labeled data and human labor, but also brings about inefficiency and limitations. In contrast, recent research shows that unsupervised learning has great potential in tackling the above disadvantages for visual industrial anomaly detection. In this survey, we summarize current challenges and provide a thorough overview of recently proposed unsupervised algorithms for visual industrial anomaly detection covering five categories, whose innovation points and frameworks are described in detail. Meanwhile, publicly available datasets for industrial anomaly detection are introduced. By comparing different classes of methods, the advantages and disadvantages of anomaly detection algorithms are summarized. Based on the current research framework, we point out the core issue that remains to be resolved and provide further improvement directions. Meanwhile, based on the latest technological trends, we offer insights into future research directions. It is expected to assist both the research community and industry in developing a broader and cross-domain perspective

    High-Fidelity Zero-Shot Texture Anomaly Localization Using Feature Correspondence Analysis

    Full text link
    We propose a novel method for Zero-Shot Anomaly Localization that leverages a bidirectional mapping derived from the 1-dimensional Wasserstein Distance. The proposed approach allows pinpointing the anomalous regions in a texture with increased precision by aggregating the contribution of a pixel to the errors of all nearby patches. We validate our solution on several datasets and obtain more than a 40% reduction in error over the previous state of the art on the MVTec AD dataset in a zero-shot setting
    • …
    corecore