61 research outputs found

    Term rewriting systems from Church-Rosser to Knuth-Bendix and beyond

    Get PDF
    Term rewriting systems are important for computability theory of abstract data types, for automatic theorem proving, and for the foundations of functional programming. In this short survey we present, starting from first principles, several of the basic notions and facts in the area of term rewriting. Our treatment, which often will be informal, covers abstract rewriting, Combinatory Logic, orthogonal systems, strategies, critical pair completion, and some extended rewriting formats

    Termination of Narrowing: Automated Proofs and Modularity Properties

    Full text link
    En 1936 Alan Turing demostro que el halting problem, esto es, el problema de decidir si un programa termina o no, es un problema indecidible para la inmensa mayoria de los lenguajes de programacion. A pesar de ello, la terminacion es un problema tan relevante que en las ultimas decadas un gran numero de tecnicas han sido desarrolladas para demostrar la terminacion de forma automatica de la maxima cantidad posible de programas. Los sistemas de reescritura de terminos proporcionan un marco teorico abstracto perfecto para el estudio de la terminacion de programas. En este marco, la evaluaci on de un t ermino consiste en la aplicacion no determinista de un conjunto de reglas de reescritura. El estrechamiento (narrowing) de terminos es una generalizacion de la reescritura que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un conjunto de reglas que denan la suma y la multiplicacion, la reescritura permite calcular expresiones aritmeticas, mientras que el estrechamiento permite resolver ecuaciones con variables. Esta tesis constituye el primer estudio en profundidad de las propiedades de terminacion del estrechamiento. Las contribuciones son las siguientes. En primer lugar, se identican clases de sistemas en las que el estrechamiento tiene un comportamiento bueno, en el sentido de que siempre termina. Muchos metodos de razonamiento automatico, como el analisis de la semantica de lenguajes de programaci on mediante operadores de punto jo, se benefician de esta caracterizacion. En segundo lugar, se introduce un metodo automatico, basado en el marco teorico de pares de dependencia, para demostrar la terminacion del estrechamiento en un sistema particular. Nuestro metodo es, por primera vez, aplicable a cualquier clase de sistemas. En tercer lugar, se propone un nuevo metodo para estudiar la terminacion del estrechamiento desde un termino particular, permitiendo el analisis de la terminacion de lenguajes de programacion. El nuevo metodo generaliza losIborra López, J. (2010). Termination of Narrowing: Automated Proofs and Modularity Properties [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19251Palanci

    Normal forms and normal theories in conditional rewriting

    Full text link
    this is the author’s version of a work that was accepted for publication in Journal of Logical and Algebraic Methods in Programming. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Logical and Algebraic Methods in Programming vol. 85 (2016) DOI 10.1016/j.jlamp.2015.06.001We present several new concepts and results on conditional term rewriting within the general framework of order-sorted rewrite theories (OSRTs), which support types, subtypes and rewriting modulo axioms, and contains the more restricted framework of conditional term rewriting systems (CTRSs) as a special case. The concepts shed light on several subtle issues about conditional rewriting and conditional termination. We point out that the notions of irreducible term and of normal form, which coincide for unconditional rewriting, have been conflated for conditional rewriting but are in fact totally different notions. Normal form is a stronger concept. We call any rewrite theory where all irreducible terms are normal forms a normal theory. We argue that normality is essential to have good executability and computability properties. Therefore we call all other theories abnormal, freaks of nature to be avoided. The distinction between irreducible terms and normal forms helps in clarifying various notions of strong and weak termination. We show that abnormal theories can be terminating in various, equally abnormal ways; and argue that any computationally meaningful notion of strong or weak conditional termination should be a property of normal theories. In particular we define the notion of a weakly operationally terminating (or weakly normalizing) OSRT, discuss several evaluation mechanisms to compute normal forms in such theories, and investigate general conditions under which the rewriting-based operational semantics and the initial algebra semantics of a confluent, weakly normalizing OSRT coincide thanks to a notion of canonical term algebra. Finally, we investigate appropriate conditions and proof methods to ensure that a rewrite theory is normal; and characterize the stronger property of a rewrite theory being operationally terminating in terms of a natural generalization of the notion of quasidecreasing order. (C) 2015 Elsevier Inc. All rights reserved.We thank the anonymous referees for their constructive criticism and helpful comments. This work has been partially supported by NSF grant CNS 13-19109. Salvador Lucas' research was developed during a sabbatical year at UIUC and was also supported by the EU (FEDER), Spanish MINECO projects TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and GV grant BEST/2014/026 and project PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming. 85(1):67-97. https://doi.org/10.1016/j.jlamp.2015.06.001S679785

    Applications and extensions of context-sensitive rewriting

    Full text link
    [EN] Context-sensitive rewriting is a restriction of term rewriting which is obtained by imposing replacement restrictions on the arguments of function symbols. It has proven useful to analyze computational properties of programs written in sophisticated rewriting-based programming languages such asCafeOBJ, Haskell, Maude, OBJ*, etc. Also, a number of extensions(e.g., to conditional rewritingor constrained equational systems) and generalizations(e.g., controlled rewritingor forbidden patterns) of context-sensitive rewriting have been proposed. In this paper, we provide an overview of these applications and related issues. (C) 2021 Elsevier Inc. All rights reserved.Partially supported by the EU (FEDER), and projects RTI2018-094403-B-C32 and PROMETEO/2019/098.Lucas Alba, S. (2021). Applications and extensions of context-sensitive rewriting. Journal of Logical and Algebraic Methods in Programming. 121:1-33. https://doi.org/10.1016/j.jlamp.2021.10068013312

    Term rewriting systems

    Get PDF

    Confluence of Conditional Term Rewrite Systems via Transformations

    Get PDF
    Conditional term rewriting is an intuitive yet complex extension of term rewriting. In order to benefit from the simpler framework of unconditional rewriting, transformations have been defined to eliminate the conditions of conditional term rewrite systems. Recent results provide confluence criteria for conditional term rewrite systems via transformations, yet they are restricted to CTRSs with certain syntactic properties like weak left-linearity. These syntactic properties imply that the transformations are sound for the given CTRS. This paper shows how to use transformations to prove confluence of operationally terminating, right-stable deterministic conditional term rewrite systems without the necessity of soundness restrictions. For this purpose, it is shown that certain rewrite strategies, in particular almost U-eagerness and innermost rewriting, always imply soundness

    26th International Conference on Rewriting Techniques and Applications: RTA '15, June 29 to July 1, 2015, Warsaw, Poland

    Get PDF

    Proving Confluence in the Confluence Framework with CONFident

    Full text link
    This article describes the *Confluence Framework*, a novel framework for proving and disproving confluence using a divide-and-conquer modular strategy, and its implementation in CONFident. Using this approach, we are able to automatically prove and disprove confluence of *Generalized Term Rewriting Systems*, where (i) only selected arguments of function symbols can be rewritten and (ii) a rather general class of conditional rules can be used. This includes, as particular cases, several variants of rewrite systems such as (context-sensitive) *term rewriting systems*, *string rewriting systems*, and (context-sensitive) *conditional term rewriting systems*. The divide-and-conquer modular strategy allows us to combine in a proof tree different techniques for proving confluence, including modular decompositions, checking joinability of (conditional) critical and variable pairs, transformations, etc., and auxiliary tasks required by them, e.g., joinability of terms, joinability of conditional pairs, etc

    Higher Order Unification via Explicit Substitutions

    Get PDF
    AbstractHigher order unification is equational unification for βη-conversion. But it is not first order equational unification, as substitution has to avoid capture. Thus, the methods for equational unification (such as narrowing) built upon grafting (i.e., substitution without renaming) cannot be used for higher order unification, which needs specific algorithms. Our goal in this paper is to reduce higher order unification to first order equational unification in a suitable theory. This is achieved by replacing substitution by grafting, but this replacement is not straightforward as it raises two major problems. First, some unification problems have solutions with grafting but no solution with substitution. Then equational unification algorithms rest upon the fact that grafting and reduction commute. But grafting and βη-reduction do not commute in λ-calculus and reducing an equation may change the set of its solutions. This difficulty comes from the interaction between the substitutions initiated by βη-reduction and the ones initiated by the unification process. Two kinds of variables are involved: those of βη-conversion and those of unification. So, we need to set up a calculus which distinguishes between these two kinds of variables and such that reduction and grafting commute. For this purpose, the application of a substitution of a reduction variable to a unification one must be delayed until this variable is instantiated. Such a separation and delay are provided by a calculus of explicit substitutions. Unification in such a calculus can be performed by well-known algorithms such as narrowing, but we present a specialised algorithm for greater efficiency. At last we show how to relate unification in λ-calculus and in a calculus with explicit substitutions. Thus, we come up with a new higher order unification algorithm which eliminates some burdens of the previous algorithms, in particular the functional handling of scopes. Huet's algorithm can be seen as a specific strategy for our algorithm, since each of its steps can be decomposed into elementary ones, leading to a more atomic description of the unification process. Also, solved forms in λ-calculus can easily be computed from solved forms in λσ-calculus
    • …
    corecore