1,997 research outputs found

    Causal Inference in Disease Spread across a Heterogeneous Social System

    Full text link
    Diffusion processes are governed by external triggers and internal dynamics in complex systems. Timely and cost-effective control of infectious disease spread critically relies on uncovering the underlying diffusion mechanisms, which is challenging due to invisible causality between events and their time-evolving intensity. We infer causal relationships between infections and quantify the reflexivity of a meta-population, the level of feedback on event occurrences by its internal dynamics (likelihood of a regional outbreak triggered by previous cases). These are enabled by our new proposed model, the Latent Influence Point Process (LIPP) which models disease spread by incorporating macro-level internal dynamics of meta-populations based on human mobility. We analyse 15-year dengue cases in Queensland, Australia. From our causal inference, outbreaks are more likely driven by statewide global diffusion over time, leading to complex behavior of disease spread. In terms of reflexivity, precursory growth and symmetric decline in populous regions is attributed to slow but persistent feedback on preceding outbreaks via inter-group dynamics, while abrupt growth but sharp decline in peripheral areas is led by rapid but inconstant feedback via intra-group dynamics. Our proposed model reveals probabilistic causal relationships between discrete events based on intra- and inter-group dynamics and also covers direct and indirect diffusion processes (contact-based and vector-borne disease transmissions).Comment: arXiv admin note: substantial text overlap with arXiv:1711.0635

    Hybrid Image Mining Methods to Classify the Abnormality in Complete Field Image Mammograms Based on Normal Regions

    Get PDF
    Breast Cancer now becomes a common disease among woman in developing as well as developed countries. Many noninvasive methodologies have been used to detect breast cancer. Computer Aided diagnosis through, Mammography is a widely used as a screening tool and is the gold standard for the early detection of breast cancer. The classification of breast masses into the benign and malignant categories is an important problem in the area of computer-aided diagnosis of breast cancer. We present a new method for complete total image of mammogram analysis. A mammogram is analyzed region by region and is classified as normal or abnormal. We present a hybrid technique for extracting features that can be used to distinguish normal and abnormal regions of a mammogram. We describe our classifier technique that uses a unique re-classification method to boost the classification performance. Our proposed hybrid technique comprises decision tree followed by association rule miner shows most proficient and promising performance with high classification rate compared to many other classifiers. We have tested this technique on a set of ground-truth complete total image of mammograms and the result was quite effective

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks
    • …
    corecore