191 research outputs found

    Normalized Log-Linear Interpolation of Backoff Language Models is Efficient

    Get PDF

    Handling Massive N-Gram Datasets Efficiently

    Get PDF
    This paper deals with the two fundamental problems concerning the handling of large n-gram language models: indexing, that is compressing the n-gram strings and associated satellite data without compromising their retrieval speed; and estimation, that is computing the probability distribution of the strings from a large textual source. Regarding the problem of indexing, we describe compressed, exact and lossless data structures that achieve, at the same time, high space reductions and no time degradation with respect to state-of-the-art solutions and related software packages. In particular, we present a compressed trie data structure in which each word following a context of fixed length k, i.e., its preceding k words, is encoded as an integer whose value is proportional to the number of words that follow such context. Since the number of words following a given context is typically very small in natural languages, we lower the space of representation to compression levels that were never achieved before. Despite the significant savings in space, our technique introduces a negligible penalty at query time. Regarding the problem of estimation, we present a novel algorithm for estimating modified Kneser-Ney language models, that have emerged as the de-facto choice for language modeling in both academia and industry, thanks to their relatively low perplexity performance. Estimating such models from large textual sources poses the challenge of devising algorithms that make a parsimonious use of the disk. The state-of-the-art algorithm uses three sorting steps in external memory: we show an improved construction that requires only one sorting step thanks to exploiting the properties of the extracted n-gram strings. With an extensive experimental analysis performed on billions of n-grams, we show an average improvement of 4.5X on the total running time of the state-of-the-art approach.Comment: Published in ACM Transactions on Information Systems (TOIS), February 2019, Article No: 2

    EVALUATING DISTRIBUTED WORD REPRESENTATIONS FOR PREDICTING MISSING WORDS IN SENTENCES

    Full text link
    In recent years, the distributed representation of words in vector space or word embeddings have become very popular as they have shown significant improvements in many statistical natural language processing (NLP) tasks as compared to traditional language models like Ngram. In this thesis, we explored various state-of-the-art methods like Latent Semantic Analysis, word2vec, and GloVe to learn the distributed representation of words. Their performance was compared based on the accuracy achieved when tasked with selecting the right missing word in the sentence, given five possible options. For this NLP task we trained each of these methods using a training corpus that contained texts of around five hundred 19th century novels from Project Gutenberg. The test set contained 1040 sentences where one word was missing from each sentence. The training and test set were part of the Microsoft Research Sentence Completion Challenge data set. In this work, word vectors obtained by training skip-gram model of word2vec showed the highest accuracy in finding the missing word in the sentences among all the methods tested. We also found that tuning hyperparameters of the models helped in capturing greater syntactic and semantic regularities among words

    Lexical Features for Statistical Machine Translation

    Get PDF
    In modern phrasal and hierarchical statistical machine translation systems, two major features model translation: rule translation probabilities and lexical smoothing scores. The rule translation probabilities are computed as maximum likelihood estimates (MLEs) of an entire source (or target) phrase translating to a target (or source) phrase. The lexical smoothing scores are also a likelihood estimate of a source (target) phrase translating to a target (source) phrase, but they are computed using independent word-to-word translation probabilities. Intuitively, it would seem that the lexical smoothing score is a less powerful estimate of translation likelihood due to this independence assumption, but I present the somewhat surprising result that lexical smoothing is far more important to the quality of a state-of-the-art hierarchical SMT system than rule translation probabilities. I posit that this is due to a fundamental data sparsity problem: The average word-to-word translation is seen many more times than the average phrase-to-phrase translation, so the word-to-word translation probabilities (or lexical probabilities) are far better estimated. Motivated by this result, I present a number of novel methods for modifying the lexical probabilities to improve the quality of our MT output. First, I examine two methods of lexical probability biasing, where for each test document, a set of secondary lexical probabilities are extracted and interpolated with the primary lexical probability distribution. Biasing each document with the probabilities extracted from its own first-pass decoding output provides a small but consistent gain of about 0.4 BLEU. Second, I contextualize the lexical probabilities by factoring in additional information such as the previous or next word. The key to the success of this context-dependent lexical smoothing is a backoff model, where our "trust" of a context-dependent probability estimation is directly proportional to how many times it was seen in the training. In this way, I avoid the estimation problem seen in translation rules, where the amount of context is high but the probability estimation is inaccurate. When using the surrounding words as context, this feature provides a gain of about 0.6 BLEU on Arabic and Chinese. Finally, I describe several types of discriminatively trained lexical features, along with a new optimization procedure called Expected-BLEU optimization. This new optimization procedure is able to robustly estimate weights for thousands of decoding features, which can in effect discriminatively optimize a set of lexical probabilities to maximize BLEU. I also describe two other discriminative feature types, one of which is the part-of-speech analogue to lexical probabilities, and the other of which estimates training corpus weights based on lexical translations. The discriminative features produce a gain of 0.8 BLEU on Arabic and 0.4 BLEU on Chinese

    HTK - Tutorial (Part I + II)

    Get PDF

    Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

    Get PDF
    A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.Comment: 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 200
    corecore