28 research outputs found

    Normalized Web Distance and Word Similarity

    Get PDF
    There is a great deal of work in cognitive psychology, linguistics, and computer science, about using word (or phrase) frequencies in context in text corpora to develop measures for word similarity or word association, going back to at least the 1960s. The goal of this chapter is to introduce the normalizedis a general way to tap the amorphous low-grade knowledge available for free on the Internet, typed in by local users aiming at personal gratification of diverse objectives, and yet globally achieving what is effectively the largest semantic electronic database in the world. Moreover, this database is available for all by using any search engine that can return aggregate page-count estimates for a large range of search-queries. In the paper introducing the NWD it was called `normalized Google distance (NGD),' but since Google doesn't allow computer searches anymore, we opt for the more neutral and descriptive NWD. web distance (NWD) method to determine similarity between words and phrases. ItComment: Latex, 20 pages, 7 figures, to appear in: Handbook of Natural Language Processing, Second Edition, Nitin Indurkhya and Fred J. Damerau Eds., CRC Press, Taylor and Francis Group, Boca Raton, FL, 2010, ISBN 978-142008592

    Uniform test of algorithmic randomness over a general space

    Get PDF
    The algorithmic theory of randomness is well developed when the underlying space is the set of finite or infinite sequences and the underlying probability distribution is the uniform distribution or a computable distribution. These restrictions seem artificial. Some progress has been made to extend the theory to arbitrary Bernoulli distributions (by Martin-Loef), and to arbitrary distributions (by Levin). We recall the main ideas and problems of Levin's theory, and report further progress in the same framework. - We allow non-compact spaces (like the space of continuous functions, underlying the Brownian motion). - The uniform test (deficiency of randomness) d_P(x) (depending both on the outcome x and the measure P should be defined in a general and natural way. - We see which of the old results survive: existence of universal tests, conservation of randomness, expression of tests in terms of description complexity, existence of a universal measure, expression of mutual information as "deficiency of independence. - The negative of the new randomness test is shown to be a generalization of complexity in continuous spaces; we show that the addition theorem survives. The paper's main contribution is introducing an appropriate framework for studying these questions and related ones (like statistics for a general family of distributions).Comment: 40 pages. Journal reference and a slight correction in the proof of Theorem 7 adde

    Information Distance: New Developments

    Full text link
    In pattern recognition, learning, and data mining one obtains information from information-carrying objects. This involves an objective definition of the information in a single object, the information to go from one object to another object in a pair of objects, the information to go from one object to any other object in a multiple of objects, and the shared information between objects. This is called "information distance." We survey a selection of new developments in information distance.Comment: 4 pages, Latex; Series of Publications C, Report C-2011-45, Department of Computer Science, University of Helsinki, pp. 71-7

    Web Similarity

    Get PDF

    Information distance

    Get PDF

    Asymptotics of Discrete MDL for Online Prediction

    Get PDF
    Minimum Description Length (MDL) is an important principle for induction and prediction, with strong relations to optimal Bayesian learning. This paper deals with learning non-i.i.d. processes by means of two-part MDL, where the underlying model class is countable. We consider the online learning framework, i.e. observations come in one by one, and the predictor is allowed to update his state of mind after each time step. We identify two ways of predicting by MDL for this setup, namely a static} and a dynamic one. (A third variant, hybrid MDL, will turn out inferior.) We will prove that under the only assumption that the data is generated by a distribution contained in the model class, the MDL predictions converge to the true values almost surely. This is accomplished by proving finite bounds on the quadratic, the Hellinger, and the Kullback-Leibler loss of the MDL learner, which are however exponentially worse than for Bayesian prediction. We demonstrate that these bounds are sharp, even for model classes containing only Bernoulli distributions. We show how these bounds imply regret bounds for arbitrary loss functions. Our results apply to a wide range of setups, namely sequence prediction, pattern classification, regression, and universal induction in the sense of Algorithmic Information Theory among others.Comment: 34 page
    corecore