21,559 research outputs found

    Attractive forces between anisotropic inclusions in the membrane of a vesicle

    Full text link
    The fluctuation-induced interaction between two rod-like, rigid inclusions in a fluid vesicle is studied by means of canonical ensemble Monte Carlo simulations. The vesicle membrane is represented by a triangulated network of hard spheres. Five rigidly connected hard spheres form rod-like inclusions that can leap between sites of the triangular network. Their effective interaction potential is computed as a function of mutual distance and angle of the inclusions. On account of the hard-core potential among these, the nature of the potential is purely entropic. Special precaution is taken to reduce lattice artifacts and the influence of finite-size effects due to the spherical geometry. Our results show that the effective potential is attractive and short-range compared with the rod length L. Its well depth is of the order of \kappa/10, where \kappa is the bending modulus.Comment: 7 pages, 5 eps + 3 latex figures. REVTeX. Submitted to Eur. Phys. J.

    Identifying Proteins of High Designability via Surface-Exposure Patterns

    Full text link
    Using an off-lattice model, we fully enumerate folded conformations of polypeptide chains of up to N = 19 monomers. Structures are found to differ markedly in designability, defined as the number of sequences with that structure as a unique lowest-energy conformation. We find that designability is closely correlated with the pattern of surface exposure of the folded structure. For longer chains, complete enumeration of structures is impractical. Instead, structures can be randomly sampled, and relative designability estimated either from designability within the random sample, or directly from surface-exposure pattern. We compare the surface-exposure patterns of those structures identified as highly designable to the patterns of naturally occurring proteins.Comment: 17 pages, 12 figure

    The Mass Function and Average Mass Loss Rate of Dark Matter Subhaloes

    Full text link
    We present a simple, semi-analytical model to compute the mass functions of dark matter subhaloes. The masses of subhaloes at their time of accretion are obtained from a standard merger tree. During the subsequent evolution, the subhaloes experience mass loss due to the combined effect of dynamical friction, tidal stripping, and tidal heating. Rather than integrating these effects along individual subhalo orbits, we consider the average mass loss rate, where the average is taken over all possible orbital configurations. This allows us to write the average mass loss rate as a simple function that depends only on redshift and on the instantaneous mass ratio of subhalo and parent halo. After calibrating the model by matching the subhalo mass function (SHMF) of cluster-sized dark matter haloes obtained from numerical simulations, we investigate the predicted mass and redshift dependence of the SHMF.We find that, contrary to previous claims, the subhalo mass function is not universal. Instead, both the slope and the normalization depend on the ratio of the parent halo mass, M, and the characteristic non-linear mass M*. This simply reflects a halo formation time dependence; more massive parent haloes form later, thus allowing less time for mass loss to operate. We analyze the halo-to-halo scatter, and show that the subhalo mass fraction of individual haloes depends most strongly on their accretion history in the last Gyr. Finally we provide a simple fitting function for the average SHMF of a parent halo of any mass at any redshift and for any cosmology, and briefly discuss several implications of our findings.Comment: Replaced to match version accepted for publication in MNRAS. Small section added that discusses higher-order moments of subhalo occupation distribution (including a new figure). Otherwise, few small change

    On homogeneous statistical distributions exoplanets for their dynamic parameters

    Full text link
    Correct distributions of extrasolar systems for their orbital parameters (semi-major axes, period, eccentricity) and physical characteristics (mass, spectral type of parent star) are received. Orbital resonances in extrasolar systems are considered. It is shown, that the account of more thin effects, including with use of wavelet methods, in obviously incorrectly reduced distributions it is not justified, to what the homogeneous statistical distributions for dynamic parameters of exoplanets, received in the present work, testify.Comment: 9 pages, 15 figures; International Conference "100 years since Tunguska phenomenon: Past, present and future", (June 26-28, 2008. Russia, Moscow), Lomonosov readings 2009 (Moscow State University

    Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task

    Get PDF
    Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel

    Elementary preamble to a theory of granular gases

    Get PDF
    Granular materials partake almost dramatically at times of the properties of solids and, under different circumstances, of some properties of gases. Here, within the mechanics of mass points, an elementary analysis, involving predominantly velocities rather than places, is shown to lead to a global equation concerning the shuffling motions (in addition to continuity and Cauchy's equations); it involves a stirring tensor and rules the evolution of a Reynolds' tensor.Comment: 17 page

    Method for Computing Short-Range Forces between Solid-Liquid Interfaces Driving Grain Boundary Premelting

    Full text link
    We present a molecular dynamics based method for computing accurately short-range structural forces resulting from the overlap of spatially diffuse solid-liquid interfaces at wetted grain boundaries close to the melting point. The method is based on monitoring the fluctuations of the liquid layer width at different temperatures to extract the excess interfacial free-energy as a function of this width. The method is illustrated for a high energy Sigma 9 twist boundary in pure Ni. The short-range repulsion driving premelting is found to be dominant in comparison to long-range dispersion and entropic forces and consistent with previous experimental findings that nanometer-scale layer widths may only be observed very close to the melting point.Comment: 5 pages, four figure
    • …
    corecore