19,708 research outputs found

    Normalization of Dutch user-generated content

    Get PDF
    Abstract This paper describes a phrase-based machine translation approach to normalize Dutch user-generated content (UGC). We compiled a corpus of three different social media genres (text messages, message board posts and tweets) to have a sample of this recent domain. We describe the various characteristics of this noisy text material and explain how it has been manually normalized using newly developed guidelines. For the automatic normalization task we focus on text messages, and find that a cascaded SMT system where a token-based module is followed by a translation at the character level gives the best word error rate reduction. After these initial experiments, we investigate the system's robustness on the complete domain of UGC by testing it on the other two social media genres, and find that the cascaded approach performs best on these genres as well. To our knowledge, we deliver the first proof-of-concept system for Dutch UGC normalization, which can serve as a baseline for future work

    Towards shared datasets for normalization research

    Get PDF
    In this paper we present a Dutch and English dataset that can serve as a gold standard for evaluating text normalization approaches. With the combination of text messages, message board posts and tweets, these datasets represent a variety of user generated content. All data was manually normalized to their standard form using newly-developed guidelines. We perform automatic lexical normalization experiments on these datasets using statistical machine translation techniques. We focus on both the word and character level and find that we can improve the BLEU score with ca. 20% for both languages. In order for this user generated content data to be released publicly to the research community some issues first need to be resolved. These are discussed in closer detail by focussing on the current legislation and by investigating previous similar data collection projects. With this discussion we hope to shed some light on various difficulties researchers are facing when trying to share social media data

    Benefits of data augmentation for NMT-based text normalization of user-generated content

    Get PDF
    One of the most persistent characteristics of written user-generated content (UGC) is the use of non-standard words. This characteristic contributes to an increased difficulty to automatically process and analyze UGC. Text normalization is the task of transforming lexical variants to their canonical forms and is often used as a pre-processing step for conventional NLP tasks in order to overcome the performance drop that NLP systems experience when applied to UGC. In this work, we follow a Neural Machine Translation approach to text normalization. To train such an encoder-decoder model, large parallel training corpora of sentence pairs are required. However, obtaining large data sets with UGC and their normalized version is not trivial, especially for languages other than English. In this paper, we explore how to overcome this data bottleneck for Dutch, a low-resource language. We start off with a publicly available tiny parallel Dutch data set comprising three UGC genres and compare two different approaches. The first is to manually normalize and add training data, a money and time-consuming task. The second approach is a set of data augmentation techniques which increase data size by converting existing resources into synthesized non-standard forms. Our results reveal that a combination of both approaches leads to the best results

    Adapting Sequence to Sequence models for Text Normalization in Social Media

    Full text link
    Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-the-shelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM 2019

    Collecting a corpus of Dutch SMS

    Get PDF
    In this paper we present the first freely available corpus of Dutch text messages containing data originating from the Netherlands and Flanders. This corpus has been collected in the framework of the SoNaR project and constitutes a viable part of this 500-million-word corpus. About 53,000 text messages were collected on a large scale, based on voluntary donations. These messages will be distributed as such. In this paper we focus on the data collection processes involved and after studying the effect of media coverage we show that especially free publicity in newspapers and on social media networks results in more contributions. All SMS are provided with metadata information. Looking at the composition of the corpus, it becomes visible that a small number of people have contributed a large amount of data, in total 272 people have contributed to the corpus during three months. The number of women contributing to the corpus is larger than the number of men, but male contributors submitted larger amounts of data. This corpus will be of paramount importance for sociolinguistic research and normalisation studies

    Automatic offensive language detection from Twitter data using machine learning and feature selection of metadata

    Get PDF
    The popularity of social networks has only increased in recent years. In theory, the use of social media was proposed so we could share our views online, keep in contact with loved ones or share good moments of life. However, the reality is not so perfect, so you have people sharing hate speech-related messages, or using it to bully specific individuals, for instance, or even creating robots where their only goal is to target specific situations or people. Identifying who wrote such text is not easy and there are several possible ways of doing it, such as using natural language processing or machine learning algorithms that can investigate and perform predictions using the metadata associated with it. In this work, we present an initial investigation of which are the best machine learning techniques to detect offensive language in tweets. After an analysis of the current trend in the literature about the recent text classification techniques, we have selected Linear SVM and Naive Bayes algorithms for our initial tests. For the preprocessing of data, we have used different techniques for attribute selection that will be justified in the literature section. After our experiments, we have obtained 92% of accuracy and 95% of recall to detect offensive language with Naive Bayes and 90% of accuracy and 92% of recall with Linear SVM. From our understanding, these results overcome our related literature and are a good indicative of the importance of the data description approach we have used
    corecore