4,552 research outputs found

    Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.

    Get PDF
    Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio

    Differential expression of microRNA-206 and its target genes in pre-eclampsia

    Get PDF
    Objectives: Pre-eclampsia is a multi-system disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify novel circulating miRNAs in maternal plasma that may be associated with pre-eclampsia. Methods: Plasma samples were obtained at 16 and 28 weeks of gestation from 18 women who later developed pre-eclampsia (cases) and 18 matched women with normotensive pregnancies (controls). We studied miRNA expression profiles in plasma and subsequently confirmed miRNA and target gene expression in placenta samples. Placental samples were obtained from an independent cohort of 19 women with pre-eclampsia matched with 19 women with normotensive pregnancies. Results: From the microarray, we identified 1 miRNA that was significantly differentially expressed between cases and controls at 16 weeks of gestation and 6 miRNAs that were significantly differentially expressed at 28 weeks. Following qPCR validation only one, miR-206, was found to be significantly increased in 28 week samples in women who later developed pre-eclampsia (1.4 fold change ± 0.2). The trend for increase in miR-206 expression was mirrored within placental tissue from women with pre-eclampsia. In parallel, IGF-1, a target gene of miR-206, was also found to be down-regulated (0.41 ± 0.04) in placental tissue from women with pre-eclampsia. miR-206 expression was also detectable in myometrium tissue and trophoblast cell lines. Conclusions: Our pilot study has identified miRNA-206 as a novel factor up-regulated in pre-eclampsia within the maternal circulation and in placental tissue

    Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis.

    Get PDF
    Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls

    Cross platform standardisation and normalisation experimental pipeline for use in the biodiscovery of dysregulated human circulating miRNAs

    Get PDF
    Introduction. Micro RNAs (miRNAs) are a class of highly conserved small non-coding RNAs that play an important part in the post-transcriptional regulation of gene expression. A substantial number of miRNAs have been proposed as biomarkers for diseases. While reverse transcriptase Real-time PCR (RT-qPCR) is considered the gold standard for the evaluation and validation of miRNA biomarkers, small RNA sequencing is now routinely being adopted for the identification of dysregulated miRNAs. However, in many cases where putative miRNA biomarkers are identified using small RNA sequencing, they are not substantiated when RT-qPCR is used for validation. To date, there is a lack of consensus regarding optimal methodologies for miRNA detection, quantification and standardisation when different platform technologies are used. Materials and Methods. In this study we present an experimental pipeline that takes into consideration sample collection, processing, enrichment, and the subsequent comparative analysis of circulating small ribonucleic acids using small RNA sequencing and RT-qPCR. Results, Discussion, Conclusions Initially, a panel of miRNAs dysregulated in circulating blood from breast cancer patients compared to healthy women were identified using small RNA sequencing. MiR-320a was identified as the most dysregulated miRNA between the two female cohorts. Total RNA and enriched small RNA populations (<30 bp) isolated from peripheral blood from the same female cohort samples were then tested for using a miR-320a RT-qPCR assay. When total RNA was analysed with this miR-320a RT-qPCR assay, a 2.3-fold decrease in expression levels was observed between blood samples from healthy controls and breast cancer patients. However, upon enrichment for the small RNA population and subsequent analysis of miR-320a using RT-qPCR, its dysregulation in breast cancer patients was more pronounced with an 8.89-fold decrease in miR-320a expression. We propose that the experimental pipeline outlined could serve as a robust approach for the identification and validation of small RNA biomarkers for disease

    Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients fromt he CORDIOPREV study

    Get PDF
    Circulating microRNAs (miRNAs) have been proposed as type 2 diabetes biomarkers, and they may be a more sensitive way to predict development of the disease than the currently used tools. Our aim was to identify whether circulating miRNAs, added to clinical and biochemical markers, yielded better potential for predicting type 2 diabetes. The study included 462 non-diabetic patients at baseline in the CORDIOPREV study. After a median follow-up of 60 months, 107 of them developed type 2 diabetes. Plasma levels of 24 miRNAs were measured at baseline by qRT-PCR, and other strong biomarkers to predict diabetes were determined. The ROC analysis identified 9 miRNAs, which, added to HbA1c, have a greater predictive value in early diagnosis of type 2 diabetes (AUC = 0.8342) than HbA1c alone (AUC = 0.6950). The miRNA and HbA1cbased model did not improve when the FINDRISC was included (AUC = 0.8293). Cox regression analyses showed that patients with low miR-103, miR-28-3p, miR-29a, and miR-9 and high miR-30a-5p and miR-150 circulating levels have a higher risk of disease (HR = 11.27; 95% CI = 2.61–48.65). Our results suggest that circulating miRNAs could potentially be used as a new tool for predicting the development of type 2 diabetes in clinical practice

    Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure

    Get PDF
    Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)

    Identification and validation of microRNAs as endogenous controls for quantitative polymerase chain reaction in plasma for stable coronary artery disease

    Get PDF
    Background: Circulating microRNAs (miRNAs) have been proved to serve as biomarkers for diagnosis and assessment of prognosis of coronary artery disease (CAD). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a widely-used technique to estimate expression levels of circulating miRNAs. Selection of optimal endogenous control (EC) remains critical to obtain reliable qPCR data of miRNAs expression. However, reference controls for normalization of circulating miRNA in CAD are still lacking. The purpose of this study was to identify stably expressed miRNAs to normalize RT-qPCR data derived from plasma in stable CAD.Methods: We identified 10 stably expressed candidate ECs by combining miRNA microarray screening and literature screening. These 10 candidate ECs were estimated by RT-qPCR and the data were analyzed by NormFinder and BestKeeper algorithm.Results: Two most stable ECs were identified as EC candidates and they were subsequently validated in another larger cohort. The 2 candidates were also validated by normalizing the expression levels of miR-21. In general, they were superior to the commonly used reference gene RNU6 in quantification cycle (Cq) value, stability value and normalization effect.Conclusions: Our results demonstrated that miR-6090 and miR-4516 can be used as reference genes for plasma miRNA analysis in stable CAD
    corecore