16 research outputs found

    Recognizing Dysarthric Speech due to Amyotrophic Lateral Sclerosis with Across-Speaker Articulatory Normalization

    Get PDF
    Abstract Recent dysarthric speech recognition studies using mixed data from a collection of neurological diseases suggested articulatory data can help to improve the speech recognition performance. This project was specifically designed for the speakerindependent recognition of dysarthric speech due to amyotrophic lateral sclerosis (ALS) using articulatory data. In this paper, we investigated three across-speaker normalization approaches in acoustic, articulatory, and both spaces: Procrustes matching (a physiological approach in articulatory space), vocal tract length normalization (a data-driven approach in acoustic space), and feature space maximum likelihood linear regression (a model-based approach for both spaces), to address the issue of high degree of variation of articulation across different speakers. A preliminary ALS data set was collected and used to evaluate the approaches. Two recognizers, Gaussian mixture model (GMM) -hidden Markov model (HMM) and deep neural network (DNN) -HMM, were used. Experimental results showed adding articulatory data significantly reduced the phoneme error rates (PERs) using any or combined normalization approaches. DNN-HMM outperformed GMM-HMM in all configurations. The best performance (30.7% PER) was obtained by triphone DNN-HMM + acoustic and articulatory data + all three normalization approaches, a 15.3% absolute PER reduction from the baseline using triphone GMM-HMM + acoustic data

    Statistical Parametric Methods for Articulatory-Based Foreign Accent Conversion

    Get PDF
    Foreign accent conversion seeks to transform utterances from a non-native speaker (L2) to appear as if they had been produced by the same speaker but with a native (L1) accent. Such accent-modified utterances have been suggested to be effective in pronunciation training for adult second language learners. Accent modification involves separating the linguistic gestures and voice-quality cues from the L1 and L2 utterances, then transposing them across the two speakers. However, because of the complex interaction between these two sources of information, their separation in the acoustic domain is not straightforward. As a result, vocoding approaches to accent conversion results in a voice that is different from both the L1 and L2 speakers. In contrast, separation in the articulatory domain is straightforward since linguistic gestures are readily available via articulatory data. However, because of the difficulty in collecting articulatory data, conventional synthesis techniques based on unit selection are ill-suited for accent conversion given the small size of articulatory corpora and the inability to interpolate missing native sounds in L2 corpus. To address these issues, this dissertation presents two statistical parametric methods to accent conversion that operate in the acoustic and articulatory domains, respectively. The acoustic method uses a cross-speaker statistical mapping to generate L2 acoustic features from the trajectories of L1 acoustic features in a reference utterance. Our results show significant reductions in the perceived non-native accents compared to the corresponding L2 utterance. The results also show a strong voice-similarity between accent conversions and the original L2 utterance. Our second (articulatory-based) approach consists of building a statistical parametric articulatory synthesizer for a non-native speaker, then driving the synthesizer with the articulators from the reference L1 speaker. This statistical approach not only has low data requirements but also has the flexibility to interpolate missing sounds in the L2 corpus. In a series of listening tests, articulatory accent conversions were rated more intelligible and less accented than their L2 counterparts. In the final study, we compare the two approaches: acoustic and articulatory. Our results show that the articulatory approach, despite the direct access to the native linguistic gestures, is less effective in reducing perceived non-native accents than the acoustic approach

    Speaker Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography - Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data

    Let the agents do the talking: On the influence of vocal tract anatomy no speech during ontogeny

    Get PDF

    Registration and statistical analysis of the tongue shape during speech production

    Get PDF
    This thesis analyzes the human tongue shape during speech production. First, a semi-supervised approach is derived for estimating the tongue shape from volumetric magnetic resonance imaging data of the human vocal tract. Results of this extraction are used to derive parametric tongue models. Next, a framework is presented for registering sparse motion capture data of the tongue by means of such a model. This method allows to generate full three-dimensional animations of the tongue. Finally, a multimodal and statistical text-to-speech system is developed that is able to synthesize audio and synchronized tongue motion from text.Diese Dissertation beschäftigt sich mit der Analyse der menschlichen Zungenform während der Sprachproduktion. Zunächst wird ein semi-überwachtes Verfahren vorgestellt, mit dessen Hilfe sich Zungenformen von volumetrischen Magnetresonanztomographie- Aufnahmen des menschlichen Vokaltrakts schätzen lassen. Die Ergebnisse dieses Extraktionsverfahrens werden genutzt, um ein parametrisches Zungenmodell zu konstruieren. Danach wird eine Methode hergeleitet, die ein solches Modell nutzt, um spärliche Bewegungsaufnahmen der Zunge zu registrieren. Dieser Ansatz erlaubt es, dreidimensionale Animationen der Zunge zu erstellen. Zuletzt wird ein multimodales und statistisches Text-to-Speech-System entwickelt, das in der Lage ist, Audio und die dazu synchrone Zungenbewegung zu synthetisieren.German Research Foundatio

    Adaptation de clones orofaciaux à la morphologie et aux stratégies de contrôle de locuteurs cibles pour l'articulation de la parole

    Get PDF
    The capacity of producing speech is learned and maintained by means of a perception-action loop that allows speakers to correct their own production as a function of the perceptive feedback received. This auto feedback is auditory and proprioceptive, but not visual. Thus, speech sounds may be complemented by augmented speech systems, i.e. speech accompanied by the virtual display of speech articulators shapes on a computer screen, including those that are typically hidden such as tongue or velum. This kind of system has applications in domains such as speech therapy, phonetic correction or language acquisition in the framework of Computer Aided Pronunciation Training (CAPT). This work has been conducted in the frame of development of a visual articulatory feedback system, based on the morphology and articulatory strategies of a reference speaker, which automatically animates a 3D talking head from the speech sound. The motivation of this research was to make this system suitable for several speakers. Thus, the twofold objective of this thesis work was to acquire knowledge about inter-speaker variability, and to propose vocal tract models to adapt a reference clone, composed of models of speech articulator's contours (lips, tongue, velum, etc), to other speakers that may have different morphologies and different articulatory strategies. In order to build articulatory models of various vocal tract contours, we have first acquired data that cover the whole articulatory space in the French language. Midsagittal Magnetic Resonance Images (MRI) of eleven French speakers, pronouncing 63 articulations, have been collected. One of the main contributions of this study is a more detailed and larger database compared to the studies in the literature, containing information of several vocal tract contours, speakers and consonants, whereas previous studies in the literature are mostly based on vowels. The vocal tract contours visible in the MRI were outlined by hand following the same protocol for all speakers. In order to acquire knowledge about inter-speaker variability, we have characterised our speakers in terms of the articulatory strategies of various vocal tract contours like: tongue, lips and velum. We observed that each speaker has his/her own strategy to achieve sounds that are considered equivalent, among different speakers, for speech communication purposes. By means of principal component analysis (PCA), the variability of the tongue, lips and velum contours was decomposed in a set of principal movements. We noticed that these movements are performed in different proportions depending on the speaker. For instance, for a given displacement of the jaw, the tongue may globally move in a proportion that depends on the speaker. We also noticed that lip protrusion, lip opening, the influence of the jaw movement on the lips, and the velum's articulatory strategy can also vary according to the speaker. For example, some speakers roll up their uvulas against the tongue to produce the consonant /ʁ/ in vocalic contexts. These findings also constitute an important contribution to the knowledge of inter-speaker variability in speech production. In order to extract a set of common articulatory patterns that different speakers employ when producing speech sounds (normalisation), we have based our approach on linear models built from articulatory data. Multilinear decomposition methods have been applied to the contours of the tongue, lips and velum. The evaluation of our models was based in two criteria: the variance explanation and the Root Mean Square Error (RMSE) between the original and recovered articulatory coordinates. Models were also assessed using a leave-one-out cross validation procedure ...La capacité de production de la parole est apprise et maintenue au moyen d'une boucle de perception-action qui permet aux locuteurs de corriger leur propre production en fonction du retour perceptif reçu. Ce retour est auditif et proprioceptif, mais pas visuel. Ainsi, les sons de parole peuvent être complétés par l'affichage des articulateurs sur l'écran de l'ordinateur, y compris ceux qui sont habituellement cachés tels que la langue ou le voile du palais, ce qui constitue de la parole augmentée. Ce type de système a des applications dans des domaines tels que l'orthophonie, la correction phonétique et l'acquisition du langage. Ce travail a été mené dans le cadre du développement d'un système de retour articulatoire visuel, basé sur la morphologie et les stratégies articulatoires d'un locuteur de référence, qui anime automatiquement une tête parlante 3D à partir du son de la parole. La motivation de cette recherche était d'adapter ce système à plusieurs locuteurs. Ainsi, le double objectif de cette thèse était d'acquérir des connaissances sur la variabilité inter-locuteur, et de proposer des modèles pour adapter un clone de référence, composé de modèles des articulateurs de la parole (lèvres, langue, voile du palais, etc.), à d'autres locuteurs qui peuvent avoir des morphologies et des stratégies articulatoires différentes. Afin de construire des modèles articulatoires pour différents contours du conduit vocal, nous avons d'abord acquis des données qui couvrent l'espace articulatoire dans la langue française. Des Images médio-sagittales obtenues par Résonance Magnétique (IRM) pour onze locuteurs francophones prononçant 63 articulations ont été recueillis. L'un des principaux apports de cette étude est une base de données plus détaillée et plus grande que celles disponibles dans la littérature. Cette base contient, pour plusieurs locuteurs, les tracés de tous les articulateurs du conduit vocal, pour les voyelles et les consonnes, alors que les études précédentes dans la littérature sont principalement basées sur les voyelles. Les contours du conduit vocal visibles dans l'IRM ont été tracés à la main en suivant le même protocole pour tous les locuteurs. Afin d'acquérir de la connaissance sur la variabilité inter-locuteur, nous avons caractérisé nos locuteurs en termes des stratégies articulatoires des différents articulateurs tels que la langue, les lèvres et le voile du palais. Nous avons constaté que chaque locuteur a sa propre stratégie pour produire des sons qui sont considérées comme équivalents du point de vue de la communication parlée. La variabilité de la langue, des lèvres et du voile du palais a été décomposé en une série de mouvements principaux par moyen d'une analyse en composantes principales (ACP). Nous avons remarqué que ces mouvements sont effectués dans des proportions différentes en fonction du locuteur. Par exemple, pour un déplacement donné de la mâchoire, la langue peut globalement se déplacer dans une proportion qui dépend du locuteur. Nous avons également remarqué que la protrusion, l'ouverture des lèvres, l'influence du mouvement de la mâchoire sur les lèvres, et la stratégie articulatoire du voile du palais peuvent également varier en fonction du locuteur. Par exemple, certains locuteurs replient le voile du palais contre la langue pour produire la consonne /ʁ/. Ces résultats constituent également une contribution importante à la connaissance de la variabilité inter-locuteur dans la production de la parole. Afin d'extraire un ensemble de patrons articulatoires communs à différents locuteurs dans la production de la parole (normalisation), nous avons basé notre approche sur des modèles linéaires construits à partir de données articulatoires. Des méthodes de décomposition linéaire multiple ont été appliquées aux contours de la langue, des lèvres et du voile du palais ..

    SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DSYARTHRIC SPEECH RECOGNITION

    Get PDF
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers. In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, synthesis, and augmentation. For augmentation, prosodic transformation and time-feature masking have been proposed. For dysarthric speech synthesis, this dissertation has introduced a modified neural multi-talker TTS by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. In addition, we have extended this work by using a label propagation technique to create more meaningful control variables such as a continuous Respiration, Laryngeal and Tongue (RLT) parameter, even for datasets that only provide discrete dysarthria severity level information. This approach increases the controllability of the system, so we are able to generate more dysarthric speech with a broader range. To evaluate their effectiveness for synthesis of training data, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has a significant impact on the dysarthric ASR systems

    Maturing Temporal Bones as Non-Neural Sites for Transforming the Speech Signal during Language Development

    Get PDF
    Developmental events in the temporal bones shift the pattern of a given speech sounds acoustic profile through the time children are mapping linguistic sound systems. Before age 5 years, frequency information in vowels is differentially accessible through the years children are acquiring the sound systems of their native language(s). To model the acoustic effects caused by developing temporal bones, data collected to elicit steady-state vowels from adult native speakers of English and Diné were modified to reflect the form of children\u27s hearing sensitivities at different ages based on patterns established in the psychoacoustic literature. It was assumed, based on the work of psychacousticians (e.g., Werner, Fay & Popper 2012; and Werner & Marean 1996), that the effects caused by immature temporal bones were conductive immaturities, and the age-sensitive filters were constructed based on psychoacoustic research into the hearing of infants and children. Data were partitioned by language, sex, and individual vowels and compared for points of similarity and difference in the way information in vowels is filtered because of the constraints imposed by the immaturity of the temporal bones. Results show that the early formant pattern becomes successively modified in a constrained pattern reflecting maturational processes. Results also suggest that children may well be switching strategies for processing vowels, using a more adult-like process after 18 months. Future research should explore if early hearing not only affects individual speech sounds but their relationships to one another in the vowel space as well. Additionally, there is an interesting artifact in the observed gradual progression to full adult hearing which may be the effect of the foramen of Huschke contributing to the filters at 1 year and 18 months. Given that immature temporal bones reflect brain expansion and rotational birth in hominids, these results contribute to the discussion of the biological underpinnings of the evolution of language.\u2
    corecore