379 research outputs found

    TanDEM-X for Large-Area Modeling of Urban Vegetation Height: Evidence from Berlin, Germany

    Get PDF
    —Large-area urban ecology studies often miss information on vertical parameters of vegetation, even though they represent important constituting properties of complex urban ecosystems. The new globally available digital elevation model (DEM) of the spaceborne TanDEM-X mission has an unprecedented spatial resolution (12 × 12 m) that allows us to derive such relevant information. So far, suitable approaches using a TanDEM-X DEM for the derivation of a normalized canopy model (nCM) are largely absent. Therefore, this paper aims to obtain digital terrain models (DTMs) for the subsequent computation of two nCMs for urban-like vegetation (e.g., street trees) and forest-like vegetation (e.g., parks), respectively, in Berlin, Germany, using a TanDEM-X DEM and a vegetation mask derived from UltraCamX data. Initial comparisons between morphological DTM-filter confirm the superior performance of a novel disaggregated progressive morphological filter (DPMF). For improved assessment of a DTM for urban-like vegetation, a modified DPMF and image enhancement methods were applied. For forest-like vegetation, an interpolation and a weighted DPMF approach were compared. Finally, all DTMs were used for nCM calculation. The nCM for urban-like vegetation revealed a mean height of 4.17 m compared to 9.61 m of a validation nCM. For forest-like vegetation, the mean height for the nCM of the weighted filtering approach (9.16 m) produced the best results (validation nCM: 13.55 m). It is concluded that an nCM from TanDEM-X can capture vegetation heights in their appropriate dimension, which can be beneficial for automated height-related vegetation analysis such as comparisons of vegetation carbon storage between several cities

    Automatic Training Set Compilation with Multisource Geodata for DTM Generation from the TanDEM-X DSM

    Get PDF
    The TanDEM-X mission (TDM) is a spaceborne radar interferometer which delivers a global digital surface model (DSM) with a spatial resolution of 0.4 arcsec. In this letter, we propose an automatic workflow for digital terrain model (DTM) generation from TDM DSM data through additional consideration of Sentinel-2 imagery and open-source geospatial vector data. The method includes the automatic and robust compilation of training samples by imposing dedicated criteria on the multisource geodata for subsequent learning of a classification model. The model is capable of supporting the accurate distinction of elevated objects (OBJ) and bare earth (BE) measurements in the TDM DSM. Finally, a DTM is interpolated from identified BE measurements. Experimental results obtained from a test site which covers a complex and heterogeneous built environment of Santiago de Chile, Chile, underline the usefulness of the proposed workflow, since it allows for substantially increased accuracies compared to a morphological filter-based method

    Urban morphology parameters from global digital elevation models: implications for aerodynamic roughness for wind-speed estimation

    Get PDF
    Urban morphology and aerodynamic roughness parameters are derived from three global digital elevation models (GDEM): Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), and TanDEM-X. Initially, each is compared to benchmark elevation data in London (UK). A moving window extracts ground heights from the GDEMs, generating terrain models with root-mean-square accuracy of up to 3 m. Subtraction of extracted ground heights provides roughness-element heights only, allowing for calculation of morphology parameters. The parameters are calculated for eight directional sectors of 1 km grid-squares. Apparent merging of roughness elements in all GDEMs causes height-based parameter underestimation, whilst plan and frontal areas are over- and under-estimated, respectively. Combined, these lead to an underestimation of morphometrically-derived aerodynamic roughness parameters. Parameter errors are least for the TanDEM-X data. Further comparison in five cities (Auckland, Greater London, New York, Sao Paulo, Tokyo) provides basis for empirical corrections to TanDEM-X-derived geometric parameters. These reduce the error in parameters across the cities and for a separate location. Meteorological observations in central London give insight to wind-speed estimation accuracy using roughness parameters from the different elevation databases. The proposed corrections to TanDEM-X parameters lead to improved wind-speed estimates, which combined with the improved spatial representation of parameters across cities demonstrates their potential for use in future studies

    Earth observation-based disaggregation of exposure data for earthquake loss modeling

    Get PDF
    We use TanDEM-X and Sentinel-2 observations to disaggregate earthquake risk-related exposure data. We use the refined exposure data and model earthquake loss. Results for the city of Santiago de Chile show that earthquake risk has been underestimated before due to aggregated exposure data

    Earth observation-based disaggregation of exposure data for earthquake loss modelling

    Get PDF
    We use TanDEM-X and Sentinel-2 observations to disaggregate earthquake risk-related exposure data. We use the refined exposure data and model earthquake loss. Results for the city of Santiago de Chile show that earthquake risk has been underestimated before due to aggregated exposure data

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Benefits of global earth observation missions for disaggregation of exposure data and earthquake loss modeling: evidence from Santiago de Chile

    Get PDF
    Exposure is an essential component of risk models and describes elements that are endangered by a hazard and susceptible to damage. The associated vulnerability characterizes the likelihood of experiencing damage (which can translate into losses) at a certain level of hazard intensity. Frequently, the compilation of exposure information is the costliest component (in terms of time and labor) of risk assessment procedures. Existing models often describe exposure in an aggregated manner, e.g., by relying on statistical/census data for given administrative entities. Nowadays, earth observation techniques allow the collection of spatially continuous information for large geographic areas while enabling a high geometric and temporal resolution. Consequently, we exploit measurements from the earth observation missions TanDEM-X and Sentinel-2, which collect data on a global scale, to characterize the built environment in terms of constituting morphologic properties, namely built-up density and height. Subsequently, we use this information to constrain existing exposure data in a spatial disaggregation approach. Thereby, we establish dasymetric methods for disaggregation. The results are presented for the city of Santiago de Chile, which is prone to natural hazards such as earthquakes. We present loss estimations due to seismic ground shaking and corresponding sensitivity as a function of the resolution properties of the exposure data used in the model. The experimental results underline the benefits of deploying modern earth observation technologies for refined exposure mapping and related earthquake loss estimation with enhanced accuracy properties
    corecore