1,583 research outputs found

    Synthesizing Modular Invariants for Synchronous Code

    Full text link
    In this paper, we explore different techniques to synthesize modular invariants for synchronous code encoded as Horn clauses. Modular invariants are a set of formulas that characterizes the validity of predicates. They are very useful for different aspects of analysis, synthesis, testing and program transformation. We describe two techniques to generate modular invariants for code written in the synchronous dataflow language Lustre. The first technique directly encodes the synchronous code in a modular fashion. While in the second technique, we synthesize modular invariants starting from a monolithic invariant. Both techniques, take advantage of analysis techniques based on property-directed reachability. We also describe a technique to minimize the synthesized invariants.Comment: In Proceedings HCVS 2014, arXiv:1412.082

    Hypertableau Reasoning for Description Logics

    Full text link
    We present a novel reasoning calculus for the description logic SHOIQ^+---a knowledge representation formalism with applications in areas such as the Semantic Web. Unnecessary nondeterminism and the construction of large models are two primary sources of inefficiency in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which we extend with a blocking condition to ensure termination. In order to reduce the size of the constructed models, we introduce anywhere pairwise blocking. We also present an improved nominal introduction rule that ensures termination in the presence of nominals, inverse roles, and number restrictions---a combination of DL constructs that has proven notoriously difficult to handle. Our implementation shows significant performance improvements over state-of-the-art reasoners on several well-known ontologies

    Collection analysis for Horn clause programs

    Get PDF
    We consider approximating data structures with collections of the items that they contain. For examples, lists, binary trees, tuples, etc, can be approximated by sets or multisets of the items within them. Such approximations can be used to provide partial correctness properties of logic programs. For example, one might wish to specify than whenever the atom sort(t,s)sort(t,s) is proved then the two lists tt and ss contain the same multiset of items (that is, ss is a permutation of tt). If sorting removes duplicates, then one would like to infer that the sets of items underlying tt and ss are the same. Such results could be useful to have if they can be determined statically and automatically. We present a scheme by which such collection analysis can be structured and automated. Central to this scheme is the use of linear logic as a omputational logic underlying the logic of Horn clauses

    MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers

    Full text link
    MaLeS is an automatic tuning framework for automated theorem provers. It provides solutions for both the strategy finding as well as the strategy scheduling problem. This paper describes the tool and the methods used in it, and evaluates its performance on three automated theorem provers: E, LEO-II and Satallax. An evaluation on a subset of the TPTP library problems shows that on average a MaLeS-tuned prover solves 8.67% more problems than the prover with its default settings

    Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints

    Get PDF
    The monadic shallow linear Horn fragment is well-known to be decidable and has many application, e.g., in security protocol analysis, tree automata, or abstraction refinement. It was a long standing open problem how to extend the fragment to the non-Horn case, preserving decidability, that would, e.g., enable to express non-determinism in protocols. We prove decidability of the non-Horn monadic shallow linear fragment via ordered resolution further extended with dismatching constraints and discuss some applications of the new decidable fragment.Comment: 29 pages, long version of CADE-26 pape
    corecore