2,304 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Automatic Pain Assessment by Learning from Multiple Biopotentials

    Get PDF
    Kivun täsmällinen arviointi on tärkeää kivunhallinnassa, erityisesti sairaan- hoitoa vaativille ipupotilaille. Kipu on subjektiivista, sillä se ei ole pelkästään aistituntemus, vaan siihen saattaa liittyä myös tunnekokemuksia. Tällöin itsearviointiin perustuvat kipuasteikot ovat tärkein työkalu, niin auan kun potilas pystyy kokemuksensa arvioimaan. Arviointi on kuitenkin haasteellista potilailla, jotka eivät itse pysty kertomaan kivustaan. Kliinisessä hoito- työssä kipua pyritään objektiivisesti arvioimaan esimerkiksi havainnoimalla fysiologisia muuttujia kuten sykettä ja käyttäytymistä esimerkiksi potilaan kasvonilmeiden perusteella. Tutkimuksen päätavoitteena on automatisoida arviointiprosessi hyödyntämällä koneoppimismenetelmiä yhdessä biosignaalien prosessointnin kanssa. Tavoitteen saavuttamiseksi mitattiin autonomista keskushermoston toimintaa kuvastavia biopotentiaaleja: sydänsähkökäyrää, galvaanista ihoreaktiota ja kasvolihasliikkeitä mittaavaa lihassähkökäyrää. Mittaukset tehtiin terveillä vapaaehtoisilla, joille aiheutettiin kokeellista kipuärsykettä. Järestelmän kehittämiseen tarvittavaa tietokantaa varten rakennettiin biopotentiaaleja keräävä Internet of Things -pohjainen tallennusjärjestelmä. Koostetun tietokannan avulla kehitettiin biosignaaleille prosessointimenetelmä jatku- vaan kivun arviointiin. Signaaleista eroteltiin piirteitä sekuntitasoon mukautetuilla aikaikkunoilla. Piirteet visualisoitiin ja tarkasteltiin eri luokittelijoilla kivun ja kiputason tunnistamiseksi. Parhailla luokittelumenetelmillä saavutettiin kivuntunnistukseen 90% herkkyyskyky (sensitivity) ja 84% erottelukyky (specificity) ja kivun voimakkuuden arviointiin 62,5% tarkkuus (accuracy). Tulokset vahvistavat kyseisen käsittelytavan käyttökelpoisuuden erityis- esti tunnistettaessa kipua yksittäisessä arviointi-ikkunassa. Tutkimus vahvistaa biopotentiaalien avulla kehitettävän automatisoidun kivun arvioinnin toteutettavuuden kokeellisella kivulla, rohkaisten etenemään todellisen kivun tutkimiseen samoilla menetelmillä. Menetelmää kehitettäessä suoritettiin lisäksi vertailua ja yhteenvetoa automaattiseen kivuntunnistukseen kehitettyjen eri tutkimusten välisistä samankaltaisuuksista ja eroista. Tarkastelussa löytyi signaalien eroavaisuuksien lisäksi tutkimusmuotojen aiheuttamaa eroa arviointitavoitteisiin, mikä hankaloitti tutkimusten vertailua. Lisäksi pohdit- tiin mitkä perinteisten prosessointitapojen osiot rajoittavat tai edistävät ennustekykyä ja miten, sekä tuoko optimointi läpimurtoa järjestelmän näkökulmasta.Accurate pain assessment plays an important role in proper pain management, especially among hospitalized people experience acute pain. Pain is subjective in nature which is not only a sensory feeling but could also combine affective factors. Therefore self-report pain scales are the main assessment tools as long as patients are able to self-report. However, it remains a challenge to assess the pain from the patients who cannot self-report. In clinical practice, physiological parameters like heart rate and pain behaviors including facial expressions are observed as empirical references to infer pain objectively. The main aim of this study is to automate such process by leveraging machine learning methods and biosignal processing. To achieve this goal, biopotentials reflecting autonomic nervous system activities including electrocardiogram and galvanic skin response, and facial expressions measured with facial electromyograms were recorded from healthy volunteers undergoing experimental pain stimulus. IoT-enabled biopotential acquisition systems were developed to build the database aiming at providing compact and wearable solutions. Using the database, a biosignal processing flow was developed for continuous pain estimation. Signal features were extracted with customized time window lengths and updated every second. The extracted features were visualized and fed into multiple classifiers trained to estimate the presence of pain and pain intensity separately. Among the tested classifiers, the best pain presence estimating sensitivity achieved was 90% (specificity 84%) and the best pain intensity estimation accuracy achieved was 62.5%. The results show the validity of the proposed processing flow, especially in pain presence estimation at window level. This study adds one more piece of evidence on the feasibility of developing an automatic pain assessment tool from biopotentials, thus providing the confidence to move forward to real pain cases. In addition to the method development, the similarities and differences between automatic pain assessment studies were compared and summarized. It was found that in addition to the diversity of signals, the estimation goals also differed as a result of different study designs which made cross dataset comparison challenging. We also tried to discuss which parts in the classical processing flow would limit or boost the prediction performance and whether optimization can bring a breakthrough from the system’s perspective

    Fast fluorescence lifetime imaging and sensing via deep learning

    Get PDF
    Error on title page – year of award is 2023.Fluorescence lifetime imaging microscopy (FLIM) has become a valuable tool in diverse disciplines. This thesis presents deep learning (DL) approaches to addressing two major challenges in FLIM: slow and complex data analysis and the high photon budget for precisely quantifying the fluorescence lifetimes. DL's ability to extract high-dimensional features from data has revolutionized optical and biomedical imaging analysis. This thesis contributes several novel DL FLIM algorithms that significantly expand FLIM's scope. Firstly, a hardware-friendly pixel-wise DL algorithm is proposed for fast FLIM data analysis. The algorithm has a simple architecture yet can effectively resolve multi-exponential decay models. The calculation speed and accuracy outperform conventional methods significantly. Secondly, a DL algorithm is proposed to improve FLIM image spatial resolution, obtaining high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images. A computational framework is developed to generate large-scale semi-synthetic FLIM datasets to address the challenge of the lack of sufficient high-quality FLIM datasets. This algorithm offers a practical approach to obtaining HR FLIM images quickly for FLIM systems. Thirdly, a DL algorithm is developed to analyze FLIM images with only a few photons per pixel, named Few-Photon Fluorescence Lifetime Imaging (FPFLI) algorithm. FPFLI uses spatial correlation and intensity information to robustly estimate the fluorescence lifetime images, pushing this photon budget to a record-low level of only a few photons per pixel. Finally, a time-resolved flow cytometry (TRFC) system is developed by integrating an advanced CMOS single-photon avalanche diode (SPAD) array and a DL processor. The SPAD array, using a parallel light detection scheme, shows an excellent photon-counting throughput. A quantized convolutional neural network (QCNN) algorithm is designed and implemented on a field-programmable gate array as an embedded processor. The processor resolves fluorescence lifetimes against disturbing noise, showing unparalleled high accuracy, fast analysis speed, and low power consumption.Fluorescence lifetime imaging microscopy (FLIM) has become a valuable tool in diverse disciplines. This thesis presents deep learning (DL) approaches to addressing two major challenges in FLIM: slow and complex data analysis and the high photon budget for precisely quantifying the fluorescence lifetimes. DL's ability to extract high-dimensional features from data has revolutionized optical and biomedical imaging analysis. This thesis contributes several novel DL FLIM algorithms that significantly expand FLIM's scope. Firstly, a hardware-friendly pixel-wise DL algorithm is proposed for fast FLIM data analysis. The algorithm has a simple architecture yet can effectively resolve multi-exponential decay models. The calculation speed and accuracy outperform conventional methods significantly. Secondly, a DL algorithm is proposed to improve FLIM image spatial resolution, obtaining high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images. A computational framework is developed to generate large-scale semi-synthetic FLIM datasets to address the challenge of the lack of sufficient high-quality FLIM datasets. This algorithm offers a practical approach to obtaining HR FLIM images quickly for FLIM systems. Thirdly, a DL algorithm is developed to analyze FLIM images with only a few photons per pixel, named Few-Photon Fluorescence Lifetime Imaging (FPFLI) algorithm. FPFLI uses spatial correlation and intensity information to robustly estimate the fluorescence lifetime images, pushing this photon budget to a record-low level of only a few photons per pixel. Finally, a time-resolved flow cytometry (TRFC) system is developed by integrating an advanced CMOS single-photon avalanche diode (SPAD) array and a DL processor. The SPAD array, using a parallel light detection scheme, shows an excellent photon-counting throughput. A quantized convolutional neural network (QCNN) algorithm is designed and implemented on a field-programmable gate array as an embedded processor. The processor resolves fluorescence lifetimes against disturbing noise, showing unparalleled high accuracy, fast analysis speed, and low power consumption

    Acta Polytechnica Hungarica 2019

    Get PDF

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 133)

    Get PDF
    This special bibliography lists 276 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in September 1974

    Designing Artificial Neural Networks (ANNs) for Electrical Appliance Classification in Smart Energy Distribution Systems

    Get PDF
    En este proyecto se abordará el problema de la desagregación del consumo eléctrico a través del diseño de sistemas inteligentes, basados en redes neuronales profundas, que puedan formar parte de sistemas más amplios de gestión y distribución de energía. Durante la definición estará presente la búsqueda de una complejidad computacional adecuada que permita una implementación posterior de bajo costo. En concreto, estos sistemas realizarán el proceso de clasificación a partir de los cambios en la corriente eléctrica provocados por los distintos electrodomésticos. Para la evaluación y comparación de las diferentes propuestas se hará uso de la base de datos BLUED.This project will address the energy consumption disaggregation problem through the design of intelligent systems, based on deep artificial neural networks, which would be part of broader energy management and distribution systems. The search for adequate computational complexity that will allow a subsequent implementation of low cost will be present during algorithm definition. Specifically, these systems will carry out the classification process based on the changes caused by the different appliances in the electric current. For the evaluation and comparison of the different proposals, the BLUED database will be used.Máster Universitario en Ingeniería Industrial (M141

    Feature Selection and Classifier Development for Radio Frequency Device Identification

    Get PDF
    The proliferation of simple and low-cost devices, such as IEEE 802.15.4 ZigBee and Z-Wave, in Critical Infrastructure (CI) increases security concerns. Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting facilitates biometric-like identification of electronic devices emissions from variances in device hardware. Developing reliable classifier models using RF-DNA fingerprints is thus important for device discrimination to enable reliable Device Classification (a one-to-many looks most like assessment) and Device ID Verification (a one-to-one looks how much like assessment). AFITs prior RF-DNA work focused on Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) and Generalized Relevance Learning Vector Quantized Improved (GRLVQI) classifiers. This work 1) introduces a new GRLVQI-Distance (GRLVQI-D) classifier that extends prior GRLVQI work by supporting alternative distance measures, 2) formalizes a framework for selecting competing distance measures for GRLVQI-D, 3) introducing response surface methods for optimizing GRLVQI and GRLVQI-D algorithm settings, 4) develops an MDA-based Loadings Fusion (MLF) Dimensional Reduction Analysis (DRA) method for improved classifier-based feature selection, 5) introduces the F-test as a DRA method for RF-DNA fingerprints, 6) provides a phenomenological understanding of test statistics and p-values, with KS-test and F-test statistic values being superior to p-values for DRA, and 7) introduces quantitative dimensionality assessment methods for DRA subset selection
    corecore