70 research outputs found

    Strong normalisation for applied lambda calculi

    Full text link
    We consider the untyped lambda calculus with constructors and recursively defined constants. We construct a domain-theoretic model such that any term not denoting bottom is strongly normalising provided all its `stratified approximations' are. From this we derive a general normalisation theorem for applied typed lambda-calculi: If all constants have a total value, then all typeable terms are strongly normalising. We apply this result to extensions of G\"odel's system T and system F extended by various forms of bar recursion for which strong normalisation was hitherto unknown.Comment: 14 pages, paper acceptet at electronic journal LMC

    (Head-)normalization of typeable rewrite systems

    Full text link

    The Heart of Intersection Type Assignment

    Get PDF
    This paper gives a new proof for the approximation theorem and the characterisation of normalisability using intersection types. The technique applied is to define reduction on derivations and to show a strong normalisation result for this reduction. From this result, the characterisation of strong normalisation and the approximation result will follow easily; the latter, in its turn, will lead to the characterisation of (head-)normalisability

    Equations for Hereditary Substitution in Leivant's Predicative System F: A Case Study

    Full text link
    This paper presents a case study of formalizing a normalization proof for Leivant's Predicative System F using the Equations package. Leivant's Predicative System F is a stratified version of System F, where type quantification is annotated with kinds representing universe levels. A weaker variant of this system was studied by Stump & Eades, employing the hereditary substitution method to show normalization. We improve on this result by showing normalization for Leivant's original system using hereditary substitutions and a novel multiset ordering on types. Our development is done in the Coq proof assistant using the Equations package, which provides an interface to define dependently-typed programs with well-founded recursion and full dependent pattern- matching. Equations allows us to define explicitly the hereditary substitution function, clarifying its algorithmic behavior in presence of term and type substitutions. From this definition, consistency can easily be derived. The algorithmic nature of our development is crucial to reflect languages with type quantification, enlarging the class of languages on which reflection methods can be used in the proof assistant.Comment: In Proceedings LFMTP 2015, arXiv:1507.07597. www: http://equations-fpred.gforge.inria.fr

    The Heart of Intersection Type Assignment

    No full text
    This paper gives a new proof for the approximation theorem and the characterisation of normalisability using intersection types. The technique applied is to define reduction on derivations and to show a strong normalisation result for this reduction. From this result, the characterisation of strong normalisation and the approximation result will follow easily; the latter, in its turn, will lead to the characterisation of (head-)normalisability

    Strongly typed rewriting for coupled software transformation

    Get PDF
    Coupled transformations occur in software evolution when multiple artifacts must be modified in such a way that they remain consistent with each other. An important example involves the coupled transformation of a data type, its instances, and the programs that consume or produce it. Previously, we have provided a formal treatment of transformation of the first two: data types and instances. The treatment involved the construction of type-safe, type-changing strategic rewrite systems. In this paper, we extend our treatment to the transformation of corresponding data processing programs. The key insight underlying the extension is that both data migration functions and data processors can be represented type-safely by a generalized abstract data type (GADT). These representations are then subjected to program calculation rules, harnessed in type-safe, type-preserving strategic rewrite systems. For ease of calculation, we use point-free representations and corresponding calculation rules. Thus, coupled transformations are carried out in two steps. First, a type-changing rewrite system is applied to a source type to obtain a target type together with (representations of) migration functions between source and target. Then, a type-preserving rewrite system is applied to the composition of a migration function and a data processor on the source (or target) type to obtain a data processor on the target (or source) type. All rewrites are type-safe.Fundação para a Ciência e a Tecnologia (FCT) - POSI/ICHS/44304/2002

    Transformation of structure-shy programs : applied to XPath queries and strategic functions

    Get PDF
    Various programming languages allow the construction of structure-shy programs. Such programs are defined generically for many different datatypes and only specify specific behavior for a few relevant subtypes. Typical examples are XML query languages that allow selection of subdocuments without exhaustively specifying intermediate element tags. Other examples are languages and libraries for polytypic or strategic functional programming and for adaptive object-oriented programming. In this paper, we present an algebraic approach to transformation of declarative structure-shy programs, in particular for strategic functions and XML queries. We formulate a rich set of algebraic laws, not just for transformation of structure-shy programs, but also for their conversion into structure-sensitive programs and vice versa. We show how subsets of these laws can be used to construct effective rewrite systems for specialization, generalization, and optimization of structure-shy programs. We present a type-safe encoding of these rewrite systems in Haskell which itself uses strategic functional programming techniques.(undefined

    Proof Theoretic Concepts for the Semantics of Types and Concurrency

    Get PDF
    We present a method for providing semantic interpretations for languages with a type system featuring inheritance polymorphism. Our approach is illustrated on an extension of the language Fun of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our goal is to interpret inheritances in Fun via coercion functions which are definable in the target of the translation. Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic lambda calculus, thus providing many models for the original language. This technique makes it possible to model a rich type discipline which includes parametric polymorphism and recursive types as well as inheritance. A central difficulty in providing interpretations for explicit type disciplines featuring inheritance in the sense discussed in this paper arises from the fact that programs can type-check in more than one way. Since interpretations follow the type-checking derivations, coherence theorems are required: that is, one must prove that the meaning of a program does not depend on the way it was type-checked. The proof of such theorems for our proposed interpretation are the basic technical results of this paper. Interestingly, proving coherence in the presence of recursive types, variants, and abstract types forced us to reexamine fundamental equational properties that arise in proof theory (in the form of commutative reductions) and domain theory (in the form of strict vs. non-strict functions)

    Transformation of structure-shy programs with application to XPath queries and strategic functions

    Get PDF
    Various programming languages allow the construction of structure-shy programs. Such programs are defined generically for many different datatypes and only specify specific behavior for a few relevant subtypes. Typical examples are XML query languages that allow selection of subdocuments without exhaustively specifying intermediate element tags. Other examples are languages and libraries for polytypic or strategic functional programming and for adaptive object-oriented programming. In this paper, we present an algebraic approach to transformation of declarative structure-shy programs, in particular for strategic functions and XML queries. We formulate a rich set of algebraic laws, not just for transformation of structure-shy programs, but also for their conversion into structure-sensitive programs and vice versa. We show how subsets of these laws can be used to construct effective rewrite systems for specialization, generalization, and optimization of structure-shy programs. We present a type-safe encoding of these rewrite systems in Haskell which itself uses strategic functional programming techniques. We discuss the application of these rewrite systems for XPath query optimization and for query migration in the context of schema evolution
    • …
    corecore