725 research outputs found

    Robust Inference for State-Space Models with Skewed Measurement Noise

    Get PDF
    Filtering and smoothing algorithms for linear discrete-time state-space models with skewed and heavy-tailed measurement noise are presented. The algorithms use a variational Bayes approximation of the posterior distribution of models that have normal prior and skew-t-distributed measurement noise. The proposed filter and smoother are compared with conventional low-complexity alternatives in a simulated pseudorange positioning scenario. In the simulations the proposed methods achieve better accuracy than the alternative methods, the computational complexity of the filter being roughly 5 to 10 times that of the Kalman filter.Comment: 5 pages, 7 figures. Accepted for publication in IEEE Signal Processing Letter

    Advanced Sensor and Dynamics Models with an Application to Sensor Management

    Get PDF

    Application of Dirichlet Distribution for Polytopic Model Estimation

    Get PDF
    The polytopic model (PM) structure is often used in the areas of automatic control and fault detection and isolation (FDI). It is an alternative to the multiple model approach which explicitly allows for interpolation among local models. This thesis proposes a novel approach to PM estimation by modeling the set of PM weights as a random vector with Dirichlet Distribution (DD). A new approximate (adaptive) PM estimator, referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF) is derived and implemented. The model weights and state estimation in the QBAKF is performed adaptively by a simple QB weights\u27 estimator and a single KF on the PM with the estimated weights. Since PM estimation problem is nonlinear and non-Gaussian, a DD marginalized particle filter (DDMPF) is also developed and implemented similar to MPF. The simulation results show that the newly proposed algorithms have better estimation accuracy, design simplicity, and computational requirements for PM estimation

    Application of Dirichlet Distribution for Polytopic Model Estimation

    Get PDF
    The polytopic model (PM) structure is often used in the areas of automatic control and fault detection and isolation (FDI). It is an alternative to the multiple model approach which explicitly allows for interpolation among local models. This thesis proposes a novel approach to PM estimation by modeling the set of PM weights as a random vector with Dirichlet Distribution (DD). A new approximate (adaptive) PM estimator, referred to as a Quasi-Bayesian Adaptive Kalman Filter (QBAKF) is derived and implemented. The model weights and state estimation in the QBAKF is performed adaptively by a simple QB weights\u27 estimator and a single KF on the PM with the estimated weights. Since PM estimation problem is nonlinear and non-Gaussian, a DD marginalized particle filter (DDMPF) is also developed and implemented similar to MPF. The simulation results show that the newly proposed algorithms have better estimation accuracy, design simplicity, and computational requirements for PM estimation

    On particle filters in radar target tracking

    Get PDF
    The dissertation focused on the research, implementation, and evaluation of particle filters for radar target track filtering of a maneuvering target, through quantitative simulations and analysis thereof. Target track filtering, also called target track smoothing, aims to minimize the error between a radar target's predicted and actual position. From the literature it had been suggested that particle filters were more suitable for filtering in non-linear/non-Gaussian systems. Furthermore, it had been determined that particle filters were a relatively newer field of research relating to radar target track filtering for non-linear, non-Gaussian maneuvering target tracking problems, compared to the more traditional and widely known and implemented approaches and techniques. The objectives of the research project had been achieved through the development of a software radar target tracking filter simulator, which implemented a sequential importance re-sampling particle filter algorithm and suitable target and noise models. This particular particle filter had been identified from a review of the theory of particle filters. The theory of the more conventional tracking filters used in radar applications had also been reviewed and discussed. The performance of the sequential importance re-sampling particle filter for radar target track filtering had been evaluated through quantitative simulations and analysis thereof, using predefined metrics identified from the literature. These metrics had been the root mean squared error metric for accuracy, and the normalized processing time metric for computational complexity. It had been shown that the sequential importance re-sampling particle filter achieved improved accuracy performance in the track filtering of a maneuvering radar target in a non-Gaussian (Laplacian) noise environment, compared to a Gaussian noise environment. It had also been shown that the accuracy performance of the sequential importance re-sampling particle filter is a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The sequential importance re-sampling particle filter had also been compared to two conventional tracking filters, namely the alpha-beta filter and the Singer-Kalman filter, and had better accuracy performance in both cases. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be higher than that of both the alpha-beta filter and the Singer-Kalman filter. Analysis of the posterior Cramér-Rao lower bound of the sequential importance re-sampling particle filter had also been conducted and presented in the dissertation

    Space-based Maneuver Detection and Characterization using Multiple Model Adaptive Estimation

    Get PDF
    An increasingly congested space environment requires real-time and dynamic space situational awareness (SSA) on both domestic and foreign space objects in Earth orbits. Current statistical orbit determination (SOD) techniques are able to estimate and track trajectories for cooperative spacecraft. However, a non-cooperative spacecraft performing unknown maneuvers at unknown times can lead to unexpected changes in the underlying dynamics of classical filtering techniques. Adaptive estimation techniques can be utilized to build a bank of recursive estimators with different hypotheses on a system\u27s dynamics. The current study assesses the use of a multiple model adaptive estimation (MMAE) technique for detecting and characterizing noncooperative spacecraft maneuvers using space-based sensors for spacecraft in close proximity. A series of classical and variable state multiple model frameworks are implemented, tested, and analyzed through maneuver detection scenarios using relative spacecraft orbit dynamics. Variable levels of noise, data availability, and target thrust profiles are used to demonstrate and quantify the performance of the MMAE algorithm using Monte Carlo methods. The current research demonstrates that adaptive estimation techniques are able to handle unknown changes in the dynamics while keeping comparable errors with respect to other classical estimation methods
    • …
    corecore