463 research outputs found

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape

    Crossed simplicial groups and structured surfaces

    Full text link
    We propose a generalization of the concept of a Ribbon graph suitable to provide combinatorial models for marked surfaces equipped with a G-structure. Our main insight is that the necessary combinatorics is neatly captured in the concept of a crossed simplicial group as introduced, independently, by Krasauskas and Fiedorowicz-Loday. In this context, Connes' cyclic category leads to Ribbon graphs while other crossed simplicial groups naturally yield different notions of structured graphs which model unoriented, N-spin, framed, etc, surfaces. Our main result is that structured graphs provide orbicell decompositions of the respective G-structured moduli spaces. As an application, we show how, building on our theory of 2-Segal spaces, the resulting theory can be used to construct categorified state sum invariants of G-structured surfaces.Comment: 86 pages, v2: revised versio

    Gradings of non-graded Hamiltonian Lie algebras

    Full text link
    A thin Lie algebra is a Lie algebra graded over the positive integers satisfying a certain narrowness condition. We describe several cyclic grading of the modular Hamiltonian Lie algebras H(2\colon\n;\omega_2) (of dimension one less than a power of pp) from which we construct infinite-dimensional thin Lie algebras. In the process we provide an explicit identification of H(2\colon\n;\omega_2) with a Block algebra. We also compute its second cohomology group and its derivation algebra (in arbitrary prime characteristic).Comment: 36 pages, to be published in J. Austral. Math. Soc. Ser.

    A class of quadratic deformations of Lie superalgebras

    Full text link
    We study certain Z_2-graded, finite-dimensional polynomial algebras of degree 2 which are a special class of deformations of Lie superalgebras, which we call quadratic Lie superalgebras. Starting from the formal definition, we discuss the generalised Jacobi relations in the context of the Koszul property, and give a proof of the PBW basis theorem. We give several concrete examples of quadratic Lie superalgebras for low dimensional cases, and discuss aspects of their structure constants for the `type I' class. We derive the equivalent of the Kac module construction for typical and atypical modules, and a related direct construction of irreducible modules due to Gould. We investigate in detail one specific case, the quadratic generalisation gl_2(n/1) of the Lie superalgebra sl(n/1). We formulate the general atypicality conditions at level 1, and present an analysis of zero-and one-step atypical modules for a certain family of Kac modules.Comment: 26pp, LaTeX. Original title: "Finite dimensional quadratic Lie superalgebras"; abstract re-worded; text clarified; 3 references added; rearrangement of minor appendices into text; new subsection 4.
    corecore