2,368 research outputs found

    Knowledge-based vision for space station object motion detection, recognition, and tracking

    Get PDF
    Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed

    Extrinsic Parameter Calibration for Line Scanning Cameras on Ground Vehicles with Navigation Systems Using a Calibration Pattern

    Full text link
    Line scanning cameras, which capture only a single line of pixels, have been increasingly used in ground based mobile or robotic platforms. In applications where it is advantageous to directly georeference the camera data to world coordinates, an accurate estimate of the camera's 6D pose is required. This paper focuses on the common case where a mobile platform is equipped with a rigidly mounted line scanning camera, whose pose is unknown, and a navigation system providing vehicle body pose estimates. We propose a novel method that estimates the camera's pose relative to the navigation system. The approach involves imaging and manually labelling a calibration pattern with distinctly identifiable points, triangulating these points from camera and navigation system data and reprojecting them in order to compute a likelihood, which is maximised to estimate the 6D camera pose. Additionally, a Markov Chain Monte Carlo (MCMC) algorithm is used to estimate the uncertainty of the offset. Tested on two different platforms, the method was able to estimate the pose to within 0.06 m / 1.05∘^{\circ} and 0.18 m / 2.39∘^{\circ}. We also propose several approaches to displaying and interpreting the 6D results in a human readable way.Comment: Published in MDPI Sensors, 30 October 201

    Separable Nonlinear Least Squares Algorithm for Robust Kinematic Calibration of Serial Robots

    Get PDF
    Kinematic calibration of robots is an effective way to guarantee and promote their performance characteristics. There are many mature researches on kinematic calibration, and methods based on MDH model are the most common ones. However, when employing these calibration methods, it occasionally happens that the objective function cannot converge during iterations. Through analyzing robotic forward kinematics, we found out that the Cartesian coordinates of the end-point are affine to length-related MDH parameters, where linear and nonlinear parameters can be separated. Thanks to the distinctive characteristic of the MDH model, the kinematic calibration problem can be converted into a separable nonlinear least squares problem, which can further be partitioned into two subproblems: a linear least squares problem and a reduced problem involving only nonlinear parameters. Eventually, the optimal structural parameters can be identified by solving this problem iteratively. The results of numerical and experimental validations show that: 1) the robustness during identification procedure is enhanced by eliminating the partial linear structural parameters, the convergence rate is promoted from 68.98% to 100% with different deviation vector pairs; 2) the initial values to be pre-set for kinematic calibration problem are fewer and 3) fewer parameters are to be identified by nonlinear least squares regression, resulting in fewer iterations and faster convergence, where average runtime is reduced from 33.931s to 1.874s

    Tackling Lateral Variability Using Surface Waves: A Tomography-Like Approach

    Get PDF
    Lateral velocity variations in the near-surface reflect the presence of buried geological or anthropic structures, and their identification is of interest for many fields of application. Surface wave tomography (SWT) is a powerful technique for detecting both smooth and sharp lateral velocity variations at very different scales. A surface-wave inversion scheme derived from SWT is here applied to a 2-D active seismic dataset to characterize the shape of an urban waste deposit in an old landfill, located 15 km South of Vienna (Austria). First, the tomography-derived inverse problem for the 2-D case is defined: under the assumption of straight rays at the surface connecting sources and receivers, the forward problem for one frequency reduces to a linear relationship between observed phase differences at adjacent receivers and wavenumbers (from which phase velocities are straightforwardly derived). A norm damping regularization constraint is applied to ensure a smooth solution in space: the choice of the damping parameter is made through a minimization process, by which only phase variations of the order of the average wavelength are modelled. The inverse problem is solved for each frequency with a weighted least-squares approach, to take into account the data error variances. An independent multi-offset phase analysis (MOPA) is performed using the same dataset, for comparison: pseudo-sections from the tomography-derived linear inversion and MOPA are very consistent, with the former giving a more continuous result both in space and frequency and less artefacts. Local dispersion curves are finally depth inverted and a quasi-2-D shear wave velocity section is retrieved: we identify a well-defined low velocity zone and interpret it as the urban waste deposit body. Results are consistent with both electrical and electromagnetic measurements acquired on the same line

    Multiplex Communities and the Emergence of International Conflict

    Full text link
    Advances in community detection reveal new insights into multiplex and multilayer networks. Less work, however, investigates the relationship between these communities and outcomes in social systems. We leverage these advances to shed light on the relationship between the cooperative mesostructure of the international system and the onset of interstate conflict. We detect communities based upon weaker signals of affinity expressed in United Nations votes and speeches, as well as stronger signals observed across multiple layers of bilateral cooperation. Communities of diplomatic affinity display an expected negative relationship with conflict onset. Ties in communities based upon observed cooperation, however, display no effect under a standard model specification and a positive relationship with conflict under an alternative specification. These results align with some extant hypotheses but also point to a paucity in our understanding of the relationship between community structure and behavioral outcomes in networks.Comment: arXiv admin note: text overlap with arXiv:1802.0039

    Whole brain functional connectivity using phase locking measures of resting state magnetoencephalography

    Get PDF
    The analysis of spontaneous functional connectivity (sFC) reveals the statistical connections between regions of the brain consistent with underlying functional communication networks within the brain. In this work, we describe the implementation of a complete all-to-all network analysis of resting state neuronal activity from magnetoencephalography (MEG). Using graph theory to define networks at the dipole level, we established functionally defined regions by k-means clustering cortical surface locations using Eigenvector centrality (EVC) scores from the all-to-all adjacency model. Permutation testing was used to estimate regions with statistically significant connections compared to empty room data, which adjusts for spatial dependencies introduced by the MEG inverse problem. In order to test this model, we performed a series of numerical simulations investigating the effects of the MEG reconstruction on connectivity estimates. We subsequently applied the approach to subject data to investigate the effectiveness of our method in obtaining whole brain networks. Our findings indicated that our model provides statistically robust estimates of functional region networks. Application of our phase locking network methodology to real data produced networks with similar connectivity to previously published findings, specifically, we found connections between contralateral areas of the arcuate fasciculus that have been previously investigated. The use of data-driven methods for neuroscientific investigations provides a new tool for researchers in identifying and characterizing whole brain functional connectivity networks. © 2014 Schmidt, Ghuman and Huppert

    Spectral Properties of Effective Dynamics from Conditional Expectations

    Get PDF
    The reduction of high-dimensional systems to effective models on a smaller set of variables is an essential task in many areas of science. For stochastic dynamics governed by diffusion processes, a general procedure to find effective equations is the conditioning approach. In this paper, we are interested in the spectrum of the generator of the resulting effective dynamics, and how it compares to the spectrum of the full generator. We prove a new relative error bound in terms of the eigenfunction approximation error for reversible systems. We also present numerical examples indicating that, if Kramers–Moyal (KM) type approximations are used to compute the spectrum of the reduced generator, it seems largely insensitive to the time window used for the KM estimators. We analyze the implications of these observations for systems driven by underdamped Langevin dynamics, and show how meaningful effective dynamics can be defined in this setting
    • …
    corecore