13 research outputs found

    Study of the Gromov hyperbolicity constant on graphs

    Get PDF
    The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical hyperbolic space and Riemannian manifolds of negative sectional curvature. It is remarkable that a simple concept leads to such a rich general theory. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of any geodesic metric space is equivalent to the hyperbolicity of a graph related to it. In this Ph. D. Thesis we characterize the hyperbolicity constant of interval graphs and circular-arc graphs. Likewise, we provide relationships between dominant sets and the hyperbolicity constant. Finally, we study the invariance of the hyperbolicity constant when the graphs are transformed by several operators.Programa de Doctorado en Ingeniería Matemática por la Universidad Carlos III de MadridPresidente: Domingo de Guzmán Pestana Galván.- Secretaria: Ana Portilla Ferreira.- Vocal: Eva Tourís Loj

    Laplacian energy of graphs and digraphs.

    Get PDF
    Spectral graph theory (Algebraic graph theory) which emerged in 1950s and 1960s is the study of properties of a graph in relationship to the characteristic polynomial, eigenvalues and eigenvectors of matrices associated to the graph. The major source of research in spectral graph theory has been the study of relationship between the structural and spectral properties of graphs. Another source has research in quantum chemistry. Just as astronomers study stellar spectra to determine the make-up of distant stars, one of the main goals in spectral graph theory is to deduce the principal properties and structure of a graph from its graph spectrum (or from a short list of easily computable invariants). The spectral approach for general graphs is a step in this direction.Digital copy of Thesis.University of Kashmir

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants

    No full text
    Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    corecore