7 research outputs found

    An incident detection method considering meteorological factor with fuzzy logic

    Get PDF
    To improve the performance of automatic incident detection algorithm under extreme weather conditions, this paper introduces an innovative method to quantify the relationship between multiple weather parameters and the occurrence of traffic incident as the meteorological influencing factor, and combines the factor with traffic parameters to improve the effect of detection. The new algorithm consists of two modules: meteorological influencing factor module and incident detection module. The meteorological influencing factor module based on fuzzy logic is designed to determine the factor. On the basis of learning vector quantization (LVQ) neural network, the new incident detection module uses the factor and traffic parameters to detect incidents. The algorithm is tested with data collected from a typical freeway in Chongqing, China. Also, the performance of the algorithm is evaluated by the common criteria of detection rate (DR), false alarm rate (FAR) and mean time to detection (MTTD). The experiments conducted on the field data study the influence of different algorithm architectures exerted on the detection performance. In addition, comparative experiments are performed. The experimental results have demonstrated that the proposed algorithm has higher DR, lower FAR than the contrast algorithms, and the proposed algorithm has better potential for the application of freeway automatic incident detection

    Condition monitoring of helical gears using automated selection of features and sensors

    Get PDF
    The selection of most sensitive sensors and signal processing methods is essential process for the design of condition monitoring and intelligent fault diagnosis and prognostic systems. Normally, sensory data includes high level of noise and irrelevant or red undant information which makes the selection of the most sensitive sensor and signal processing method a difficult task. This paper introduces a new application of the Automated Sensor and Signal Processing Approach (ASPS), for the design of condition monitoring systems for developing an effective monitoring system for gearbox fault diagnosis. The approach is based on using Taguchi's orthogonal arrays, combined with automated selection of sensory characteristic features, to provide economically effective and optimal selection of sensors and signal processing methods with reduced experimental work. Multi-sensory signals such as acoustic emission, vibration, speed and torque are collected from the gearbox test rig under different health and operating conditions. Time and frequency domain signal processing methods are utilised to assess the suggested approach. The experiments investigate a single stage gearbox system with three level of damage in a helical gear to evaluate the proposed approach. Two different classification models are employed using neural networks to evaluate the methodology. The results have shown that the suggested approach can be applied to the design of condition monitoring systems of gearbox monitoring without the need for implementing pattern recognition tools during the design phase; where the pattern recognition can be implemented as part of decision making for diagnostics. The suggested system has a wide range of applications including industrial machinery as well as wind turbines for renewable energy applications

    An incident detection method considering meteorological factor with fuzzy logic

    Get PDF
    To improve the performance of automatic incident detection algorithm under extreme weather conditions, this paper introduces an innovative method to quantify the relationship between multiple weather parameters and the occurrence of traffic incident as the meteorological influencing factor, and combines the factor with traffic parameters to improve the effect of detection. The new algorithm consists of two modules: meteorological influencing factor module and incident detection module. The meteorological influencing factor module based on fuzzy logic is designed to determine the factor. On the basis of learning vector quantization (LVQ) neural network, the new incident detection module uses the factor and traffic parameters to detect incidents. The algorithm is tested with data collected from a typical freeway in Chongqing, China. Also, the performance of the algorithm is evaluated by the common criteria of detection rate (DR), false alarm rate (FAR) and mean time to detection (MTTD). The experiments conducted on the field data study the influence of different algorithm architectures exerted on the detection performance. In addition, comparative experiments are performed. The experimental results have demonstrated that the proposed algorithm has higher DR, lower FAR than the contrast algorithms, and the proposed algorithm has better potential for the application of freeway automatic incident detection

    Cyber-Physical Security with RF Fingerprint Classification through Distance Measure Extensions of Generalized Relevance Learning Vector Quantization

    Get PDF
    Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and PVs are iteratively moved to accurately represent the data. GRLVQI extends LVQ with a sigmoidal cost function, relevance learning, and PV update logic improvements. However, both LVQ and GRLVQI are limited due to a reliance on squared Euclidean distance measures and a seemingly complex algorithm structure if changes are made to the underlying distance measure. Herein, the authors (1) develop GRLVQI-D (distance), an extension of GRLVQI to consider alternative distance measures and (2) present the Cosine GRLVQI classifier using this framework. To evaluate this framework, the authors consider experimentally collected Z -wave RF signals and develop RF fingerprints to identify devices. Z -wave devices are low-cost, low-power communication technologies seen increasingly in critical infrastructure. Both classification and verification, claimed identity, and performance comparisons are made with the new Cosine GRLVQI algorithm. The results show more robust performance when using the Cosine GRLVQI algorithm when compared with four algorithms in the literature. Additionally, the methodology used to create Cosine GRLVQI is generalizable to alternative measures

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and “extreme data” conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes
    corecore