4,337 research outputs found

    Nonuniform in Time Input-to-State Stability and the Small-Gain Theorem

    Full text link

    Channel Capacity under Sub-Nyquist Nonuniform Sampling

    Full text link
    This paper investigates the effect of sub-Nyquist sampling upon the capacity of an analog channel. The channel is assumed to be a linear time-invariant Gaussian channel, where perfect channel knowledge is available at both the transmitter and the receiver. We consider a general class of right-invertible time-preserving sampling methods which include irregular nonuniform sampling, and characterize in closed form the channel capacity achievable by this class of sampling methods, under a sampling rate and power constraint. Our results indicate that the optimal sampling structures extract out the set of frequencies that exhibits the highest signal-to-noise ratio among all spectral sets of measure equal to the sampling rate. This can be attained through filterbank sampling with uniform sampling at each branch with possibly different rates, or through a single branch of modulation and filtering followed by uniform sampling. These results reveal that for a large class of channels, employing irregular nonuniform sampling sets, while typically complicated to realize, does not provide capacity gain over uniform sampling sets with appropriate preprocessing. Our findings demonstrate that aliasing or scrambling of spectral components does not provide capacity gain, which is in contrast to the benefits obtained from random mixing in spectrum-blind compressive sampling schemes.Comment: accepted to IEEE Transactions on Information Theory, 201

    3 sampled-data control of nonlinear systems

    No full text
    This chapter provides some of the main ideas resulting from recent developments in sampled-data control of nonlinear systems. We have tried to bring the basic parts of the new developments within the comfortable grasp of graduate students. Instead of presenting the more general results that are available in the literature, we opted to present their less general versions that are easier to understand and whose proofs are easier to follow. We note that some of the proofs we present have not appeared in the literature in this simplified form. Hence, we believe that this chapter will serve as an important reference for students and researchers that are willing to learn about this area of research

    Fixed-time Distributed Optimization under Time-Varying Communication Topology

    Full text link
    This paper presents a method to solve distributed optimization problem within a fixed time over a time-varying communication topology. Each agent in the network can access its private objective function, while exchange of local information is permitted between the neighbors. This study investigates first nonlinear protocol for achieving distributed optimization for time-varying communication topology within a fixed time independent of the initial conditions. For the case when the global objective function is strictly convex, a second-order Hessian based approach is developed for achieving fixed-time convergence. In the special case of strongly convex global objective function, it is shown that the requirement to transmit Hessians can be relaxed and an equivalent first-order method is developed for achieving fixed-time convergence to global optimum. Results are further extended to the case where the underlying team objective function, possibly non-convex, satisfies only the Polyak-\L ojasiewicz (PL) inequality, which is a relaxation of strong convexity.Comment: 25 page
    • …
    corecore