294 research outputs found

    A new in-camera color imaging model for computer vision

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Deep Learning based 3D Segmentation: A Survey

    Full text link
    3D object segmentation is a fundamental and challenging problem in computer vision with applications in autonomous driving, robotics, augmented reality and medical image analysis. It has received significant attention from the computer vision, graphics and machine learning communities. Traditionally, 3D segmentation was performed with hand-crafted features and engineered methods which failed to achieve acceptable accuracy and could not generalize to large-scale data. Driven by their great success in 2D computer vision, deep learning techniques have recently become the tool of choice for 3D segmentation tasks as well. This has led to an influx of a large number of methods in the literature that have been evaluated on different benchmark datasets. This paper provides a comprehensive survey of recent progress in deep learning based 3D segmentation covering over 150 papers. It summarizes the most commonly used pipelines, discusses their highlights and shortcomings, and analyzes the competitive results of these segmentation methods. Based on the analysis, it also provides promising research directions for the future.Comment: Under review of ACM Computing Surveys, 36 pages, 10 tables, 9 figure

    Optimal sparsity allows reliable system-aware restoration of fluorescence microscopy images

    Get PDF
    Incluye: artículo, material suplementario, videos y software.Fluorescence microscopy is one of the most indispensable and informative driving forces for biological research, but the extent of observable biological phenomena is essentially determined by the content and quality of the acquired images. To address the different noise sources that can degrade these images, we introduce an algorithm for multiscale image restoration through optimally sparse representation (MIRO). MIRO is a deterministic framework that models the acquisition process and uses pixelwise noise correction to improve image quality. Our study demonstrates that this approach yields a remarkable restoration of the fluorescence signal for a wide range of microscopy systems, regardless of the detector used (e.g., electron-multiplying charge-coupled device, scientific complementary metal-oxide semiconductor, or photomultiplier tube). MIRO improves current imaging capabilities, enabling fast, low-light optical microscopy, accurate image analysis, and robust machine intelligence when integrated with deep neural networks. This expands the range of biological knowledge that can be obtained from fluorescence microscopy.We acknowledge the support of the National Institutes of Health grants R35GM124846 (to S.J.) and R01AA028527 (to C.X.), the National Science Foundation grants BIO2145235 and EFMA1830941 (to S.J.), and Marvin H. and Nita S. Floyd Research Fund (to S.J.). This research project was supported, in part, by the Emory University Integrated Cellular Imaging Microscopy Core and by PHS Grant UL1TR000454 from the Clinical and Translational Science Award Program, National Institutes of Health, and National Center for Advancing Translational Sciences.S

    Super resolution and dynamic range enhancement of image sequences

    Get PDF
    Camera producers try to increase the spatial resolution of a camera by reducing size of sites on sensor array. However, shot noise causes the signal to noise ratio drop as sensor sites get smaller. This fact motivates resolution enhancement to be performed through software. Super resolution (SR) image reconstruction aims to combine degraded images of a scene in order to form an image which has higher resolution than all observations. There is a demand for high resolution images in biomedical imaging, surveillance, aerial/satellite imaging and high-definition TV (HDTV) technology. Although extensive research has been conducted in SR, attention has not been given to increase the resolution of images under illumination changes. In this study, a unique framework is proposed to increase the spatial resolution and dynamic range of a video sequence using Bayesian and Projection onto Convex Sets (POCS) methods. Incorporating camera response function estimation into image reconstruction allows dynamic range enhancement along with spatial resolution improvement. Photometrically varying input images complicate process of projecting observations onto common grid by violating brightness constancy. A contrast invariant feature transform is proposed in this thesis to register input images with high illumination variation. Proposed algorithm increases the repeatability rate of detected features among frames of a video. Repeatability rate is increased by computing the autocorrelation matrix using the gradients of contrast stretched input images. Presented contrast invariant feature detection improves repeatability rate of Harris corner detector around %25 on average. Joint multi-frame demosaicking and resolution enhancement is also investigated in this thesis. Color constancy constraint set is devised and incorporated into POCS framework for increasing resolution of color-filter array sampled images. Proposed method provides fewer demosaicking artifacts compared to existing POCS method and a higher visual quality in final image

    COLOR MAPPING FOR CAMERA-BASED COLOR CALIBRATION AND COLOR TRANSFER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    High-quality, high-throughput measurement of protein-DNA binding using HiTS-FLIP

    Get PDF
    In order to understand in more depth and on a genome wide scale the behavior of transcription factors (TFs), novel quantitative experiments with high-throughput are needed. Recently, HiTS-FLIP (High-Throughput Sequencing-Fluorescent Ligand Interaction Profiling) was invented by the Burge lab at the MIT (Nutiu et al. (2011)). Based on an Illumina GA-IIx machine for next-generation sequencing, HiTS-FLIP allows to measure the affinity of fluorescent labeled proteins to millions of DNA clusters at equilibrium in an unbiased and untargeted way examining the entire sequence space by Determination of dissociation constants (Kds) for all 12-mer DNA motifs. During my PhD I helped to improve the experimental design of this method to allow measuring the protein-DNA binding events at equilibrium omitting any washing step by utilizing the TIRF (Total Internal Reflection Fluorescence) based optics of the GA-IIx. In addition, I developed the first versions of XML based controlling software that automates the measurement procedure. Meeting the needs for processing the vast amount of data produced by each run, I developed a sophisticated, high performance software pipeline that locates DNA clusters, normalizes and extracts the fluorescent signals. Moreover, cluster contained k-mer motifs are ranked and their DNA binding affinities are quantified with high accuracy. My approach of applying phase-correlation to estimate the relative translative Offset between the observed tile images and the template images omits resequencing and thus allows to reuse the flow cell for several HiTS-FLIP experiments, which greatly reduces cost and time. Instead of using information from the sequencing images like Nutiu et al. (2011) for normalizing the cluster intensities which introduces a nucleotide specific bias, I estimate the cluster related normalization factors directly from the protein Images which captures the non-even illumination bias more accurately and leads to an improved correction for each tile image. My analysis of the ranking algorithm by Nutiu et al. (2011) has revealed that it is unable to rank all measured k-mers. Discarding all the clusters related to previously ranked k-mers has the side effect of eliminating any clusters on which k-mers could be ranked that share submotifs with previously ranked k-mers. This shortcoming affects even strong binding k-mers with only one mutation away from the top ranked k-mer. My findings show that omitting the cluster deletion step in the ranking process overcomes this limitation and allows to rank the full spectrum of all possible k-mers. In addition, the performance of the ranking algorithm is drastically reduced by my insight from a quadratic to a linear run time. The experimental improvements combined with the sophisticated processing of the data has led to a very high accuracy of the HiTS-FLIP dissociation constants (Kds) comparable to the Kds measured by the very sensitive HiP-FA assay (Jung et al. (2015)). However, experimentally HiTS-FLIP is a very challenging assay. In total, eight HiTS-FLIP experiments were performed but only one showed saturation, the others exhibited Protein aggregation occurring at the amplified DNA clusters. This biochemical issue could not be remedied. As example TF for studying the details of HiTS-FLIP, GCN4 was chosen which is a dimeric, basic leucine zipper TF and which acts as the master regulator of the amino acid starvation Response in Saccharomyces cerevisiae (Natarajan et al. (2001)). The fluorescent dye was mOrange. The HiTS-FLIP Kds for the TF GCN4 were validated by the HiP-FA assay and a Pearson correlation coefficient of R=0.99 and a relative error of delta=30.91% was achieved. Thus, a unique and comprehensive data set of utmost quantitative precision was obtained that allowed to study the complex binding behavior of GCN4 in a new way. My Downstream analyses reveal that the known 7-mer consensus motif of GCN4, which is TGACTCA, is modulated by its 2-mer neighboring flanking regions spanning an affinity range over two orders of magnitude from a Kd=1.56 nM to Kd=552.51 nM. These results suggest that the common 9-mer PWM (Position Weight Matrix) for GCN4 is insufficient to describe the binding behavior of GCN4. Rather, an additional left and right flanking nucleotide is required to extend the 9-mer to an 11-mer. My analyses regarding mutations and related delta delta G values suggest long-range interdependencies between nucleotides of the two dimeric half-sites of GCN4. Consequently, models assuming positional independence, such as a PWM, are insufficient to explain these interdependencies. Instead, the full spectrum of affinity values for all k-mers of appropriate size should be measured and applied in further analyses as proposed by Nutiu et al. (2011). Another discovery were new binding motifs of GCN4, which can only be detected with a method like HiTS-FLIP that examines the entire sequence space and allows for unbiased, de-novo motif discovery. All These new motifs contain GTGT as a submotif and the data collected suggests that GCN4 binds as monomer to these new motifs. Therefore, it might be even possible to detect different binding modes with HiTS-FLIP. My results emphasize the binding complexity of GCN4 and demonstrate the advantage of HiTS-FLIP for investigating the complexity of regulative processes

    Re-evaluation of illuminant estimation algorithms in terms of reproduction results and failure cases

    Get PDF
    Illuminant estimation algorithms are usually evaluated by measuring the recovery angular error, the angle between the RGB vectors of the estimated and ground-truth illuminants. However, this metric reports a wide range of errors for an algorithm-scene pair viewed under multiple lights. In this thesis, a new metric, “Reproduction Angular Error”, is introduced which is an improvement over the old metric and enables us to evaluate the performance of the algorithms based on the reproduced white surface by the estimated illuminant rather than the estimated illuminant itself. Adopting new reproduction error is shown to both effect the overall ranking of algorithms as well as the choice of optimal parameters for particular approaches. A psychovisual image preference experiment is carried out to investigate whether human observers prefer colour balanced images predicted by, respectively, the reproduction or recovery error metric. Human observers rank algorithms mostly according to the reproduction angular error in comparison with the recovery angular error. Whether recovery or reproduction error is used, the common approach to measuring algorithm performance is to calculate accurate summary statistics over a dataset. Mean, median and percentile summary errors are often employed. However, these aggregate statistics, by definition, make it hard to predict performance for individual images or to discover whether there are certain “hard images” where some illuminant estimation algorithms commonly fail. Not only do we find that such hard images exist, based only on the outputs of simple algorithms we provide an algorithm for identifying these hard images (which can then be assessed using more computationally complex advanced algorithms)

    Aeronautical engineering: A continuing bibliography with indexes (supplement 204)

    Get PDF
    This bibliography lists 419 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1986

    Selected Papers from Experimental Stress Analysis 2020

    Get PDF
    This Special Issue consists of selected papers from the Experimental Stress Analysis 2020 conference. Experimental Stress Analysis 2020 was organized with the support of the Czech Society for Mechanics, Expert Group of Experimental Mechanics, and was, for this particular year, held online in 19–22 October 2020. The objectives of the conference included identification of current situation, sharing professional experience and knowledge, discussing new theoretical and practical findings, and the establishment and strengthening of relationships between universities, companies, and scientists from the field of experimental mechanics in mechanical and civil engineering. The topics of the conference were focused on experimental research on materials and structures subjected to mechanical, thermal–mechanical, and dynamic loading, including damage, fatigue, and fracture analyses. The selected papers deal with top-level contemporary phenomena, such as modern durable materials, numerical modeling and simulations, and innovative non-destructive materials’ testing
    corecore