277 research outputs found

    Hierarchies of hyper-AFLs

    Get PDF
    For a full semi-AFL K, B(K) is defined as the family of languages generated by all K-extended basic macro grammars, while H(K) B(K) is the smallest full hyper-AFL containing K; a full basic-AFL is a full AFL K such that B(K) = K (hence every full basic-AFL is a full hyper-AFL). For any full semi-AFL K, K is a full basic-AFL if and only if B(K) is substitution closed if and only if H(K) is a full basic-AFL. If K is not a full basic-AFL, then the smallest full basic-AFL containing K is the union of an infinite hierarchy of full hyper-AFLs. If K is a full principal basic-AFL (such as INDEX, the family of indexed languages), then the largest full AFL properly contained in K is a full basic-AFL. There is a full basic-AFL lying properly in between the smallest full basic-AFL and the largest full basic-AFL in INDEX

    Tree transducers, L systems, and two-way machines

    Get PDF
    A relationship between parallel rewriting systems and two-way machines is investigated. Restrictions on the “copying power” of these devices endow them with rich structuring and give insight into the issues of determinism, parallelism, and copying. Among the parallel rewriting systems considered are the top-down tree transducer; the generalized syntax-directed translation scheme and the ETOL system, and among the two-way machines are the tree-walking automaton, the two-way finite-state transducer, and (generalizations of) the one-way checking stack automaton. The. relationship of these devices to macro grammars is also considered. An effort is made .to provide a systematic survey of a number of existing results

    Symbol–Relation Grammars: A Formalism for Graphical Languages

    Get PDF
    AbstractA common approach to the formal description of pictorial and visual languages makes use of formal grammars and rewriting mechanisms. The present paper is concerned with the formalism of Symbol–Relation Grammars (SR grammars, for short). Each sentence in an SR language is composed of a set of symbol occurrences representing visual elementary objects, which are related through a set of binary relational items. The main feature of SR grammars is the uniform way they use context-free productions to rewrite symbol occurrences as well as relation items. The clearness and uniformity of the derivation process for SR grammars allow the extension of well-established techniques of syntactic and semantic analysis to the case of SR grammars. The paper provides an accurate analysis of the derivation mechanism and the expressive power of the SR formalism. This is necessary to fully exploit the capabilities of the model. The most meaningful features of SR grammars as well as their generative power are compared with those of well-known graph grammar families. In spite of their structural simplicity, variations of SR grammars have a generative power comparable with that of expressive classes of graph grammars, such as the edNCE and the N-edNCE classes
    corecore