28 research outputs found

    A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Get PDF
    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Distributed Algorithms and Inverse Graph Filtering

    Get PDF
    Graph signal processing provides an innovative framework to handle data residing on distributed networks, smart grids, neural networks, social networks and many other irregular domains. By leveraging applied harmonic analysis and graph spectral theory, graph signal processing has been extensively exploited, and many important concepts in classical signal processing have been extended to the graph setting such as graph Fourier transform, graph wavelets and graph filter banks. Similarly, many optimization problems in machine learning, sensor networks, power systems, control theory and signal processing can be modeled using underlying network structure. In modern applications, the size of a network is large, and amount of data needed to store and analyze is massive. Due to privacy and security concern, storage limitations and communication cost, a traditional centralized optimization methods are not suitable to solve these optimization problems, and distributed optimization methods are desirable. Graph filters and their inverses have been widely used in denoising, smoothing, sampling, interpolating and learning. Implementation of an inverse filtering procedure on spatially distributed networks (SDNs) is a remarkable challenge, as each agent on an SDN is equipped with a data processing subsystem with limited capacity and a communication subsystem with confined range due to engineering limitations. In this dissertation, we implement the filtering procedure associated with a polynomial graph filter of multiple shifts at the vertex level in a distributed network, where each vertex is equipped with a data processing subsystem for limited computation power and data storage, and a communication subsystem for direct data exchange to its adjacent vertices. We also consider the implementation of inverse filtering procedure associated with a polynomial graph filter of multiple shifts, and we propose two iterative approximation algorithms applicable in a distributed network and in a central facility. We also introduce a preconditioned gradient descent algorithm to implement the inverse filtering procedure associated with a graph filter having small geodesic-width. It is applicable for any invertible graph filters with small geodesic-width. The proposed algorithm converges exponentially, and it can be implemented at vertex level and applied to time-varying inverse filtering on SDNs. Eigenspaces of some matrix on a network have been used for understanding the spectral clustering and influence of a vertex. Following the preconditioned gradient descent algorithm, for a matrix with small geodesic-width, we propose a distributed iterative algorithm to find eigenvectors associated with its given eigenvalue. We also consider the implementation of the proposed algorithm at the vertex/agent level in a spatially distributed network with limited data processing capability and confined communication range

    Random Sampling of Bandlimited Graph Signals from Local Measurements

    Full text link
    The random sampling on graph signals is one of the fundamental topics in graph signal processing. In this letter, we consider the random sampling of k-bandlimited signals from the local measurements and show that no more than O(klogk) measurements with replacement are sufficient for the accurate and stable recovery of any k-bandlimited graph signals. We propose two random sampling strategies based on the minimum measurements, i.e., the optimal sampling and the estimated sampling. The geodesic distance between vertices is introduced to design the sampling probability distribution. Numerical experiments are included to show the effectiveness of the proposed methods
    corecore