166 research outputs found

    Differential fast fixed-point algorithms for underdetermined instantaneous and convolutive partial blind source separation

    Full text link
    This paper concerns underdetermined linear instantaneous and convolutive blind source separation (BSS), i.e., the case when the number of observed mixed signals is lower than the number of sources.We propose partial BSS methods, which separate supposedly nonstationary sources of interest (while keeping residual components for the other, supposedly stationary, "noise" sources). These methods are based on the general differential BSS concept that we introduced before. In the instantaneous case, the approach proposed in this paper consists of a differential extension of the FastICA method (which does not apply to underdetermined mixtures). In the convolutive case, we extend our recent time-domain fast fixed-point C-FICA algorithm to underdetermined mixtures. Both proposed approaches thus keep the attractive features of the FastICA and C-FICA methods. Our approaches are based on differential sphering processes, followed by the optimization of the differential nonnormalized kurtosis that we introduce in this paper. Experimental tests show that these differential algorithms are much more robust to noise sources than the standard FastICA and C-FICA algorithms.Comment: this paper describes our differential FastICA-like algorithms for linear instantaneous and convolutive underdetermined mixture

    Underdetermined Blind Separation of Nondisjoint Sources in the Time-Frequency Domain

    Get PDF
    International audienceThis paper considers the blind separation of non-stationary sources in the underdetermined case, when there are more sources than sensors. A general framework for this problem is to work on sources that are sparse in some signal representation domain. Recently, two methods have been proposed with respect to the time-frequency (TF) domain. The first uses quadratic time-frequency distributions (TFDs) and a clustering approach, and the second uses a linear TFD. Both of these methods assume that the sources are disjoint in the TF domain; i.e. there is at most one source present at a point in the TF domain. In this paper, we relax this assumption by allowing the sources to be TF-nondisjoint to a certain extent. In particular, the number of sources present at a point is strictly less than the number of sensors. The separation can still be achieved thanks to subspace projection that allows us to identify the sources present and to estimate their corresponding TFD values. In particular, we propose two subspace-based algorithms for TF-nondisjoint sources, one uses quadratic TFDs and the other a linear TFD. Another contribution of this paper is a new estimation procedure for the mixing matrix. Finally, then numerical performance of the proposed methods are provided highlighting their performance gain compared to existing ones

    Speech Separation Using Partially Asynchronous Microphone Arrays Without Resampling

    Full text link
    We consider the problem of separating speech sources captured by multiple spatially separated devices, each of which has multiple microphones and samples its signals at a slightly different rate. Most asynchronous array processing methods rely on sample rate offset estimation and resampling, but these offsets can be difficult to estimate if the sources or microphones are moving. We propose a source separation method that does not require offset estimation or signal resampling. Instead, we divide the distributed array into several synchronous subarrays. All arrays are used jointly to estimate the time-varying signal statistics, and those statistics are used to design separate time-varying spatial filters in each array. We demonstrate the method for speech mixtures recorded on both stationary and moving microphone arrays.Comment: To appear at the International Workshop on Acoustic Signal Enhancement (IWAENC 2018

    Underdetermined blind source separation of audio sources in time-frequency domain

    Get PDF
    International audienceThis paper considers the blind separation of audio sources in the underdetermined case, where we have more sources than sensors. A recent algorithm applies time-frequency distributions (TFDs) to this problem and gives good separation performance in the case where sources are disjoint in the time-frequency (TF) plane. However, in the non-disjoint case, the reconstruction of the signals requires some interpolation at the intersection points in the TF plane. In this paper, we propose a new algorithm that combines the abovementioned method with subspace projection in order to explicitly treat non-disjoint sources. Another contribution of this paper is the estimation of the mixing matrix in the underdetermined case

    UNDERDETERMINED BLIND SEPARATION OF AUDIO SOURCES IN TIME-FREQUENCY DOMAIN

    Get PDF
    International audienceThis paper considers the blind separation of audio sources in the underdetermined case, where we have more sources than sensors. A recent algorithm applies time-frequency distributions (TFDs) to this problem and gives good separation performance in the case where sources are disjoint in the time-frequency (TF) plane. However, in the non-disjoint case, the reconstruction of the signals requires some interpolation at the intersection points in the TF plane. In this paper, we propose a new algorithm that combines the abovementioned method with subspace projection in order to explicitly treat non-disjoint sources. Another contribution of this paper is the estimation of the mixing matrix in the underdetermined case

    Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques

    Get PDF
    The problem of blind source separation (BSS) is investigated. Following the assumption that the time-frequency (TF) distributions of the input sources do not overlap, quadratic TF representation is used to exploit the sparsity of the statistically nonstationary sources. However, separation performance is shown to be limited by the selection of a certain threshold in classifying the eigenvectors of the TF matrices drawn from the observation mixtures. Two methods are, therefore, proposed based on recently introduced advanced clustering techniques, namely Gap statistics and self-splitting competitive learning (SSCL), to mitigate the problem of eigenvector classification. The novel integration of these two approaches successfully overcomes the problem of artificial sources induced by insufficient knowledge of the threshold and enables automatic determination of the number of active sources over the observation. The separation performance is thereby greatly improved. Practical consequences of violating the TF orthogonality assumption in the current approach are also studied, which motivates the proposal of a new solution robust to violation of orthogonality. In this new method, the TF plane is partitioned into appropriate blocks and source separation is thereby carried out in a block-by-block manner. Numerical experiments with linear chirp signals and Gaussian minimum shift keying (GMSK) signals are included which support the improved performance of the proposed approaches

    Contribution of Statistical Tests to Sparseness-Based Blind Source Separation

    Get PDF
    International audienceWe address the problem of blind source separation in the underdetermined mixture case. Two statistical tests are proposed to reduce the number of empirical parameters involved in standard sparseness-based underdetermined blind source separation (UBSS) methods. The first test performs multisource selection of the suitable time-frequency points for source recovery and is full automatic. The second one is dedicated to autosource selection for mixing matrix estimation and requires fixing two parameters only, regardless of the instrumented SNRs. We experimentally show that the use of these tests incurs no performance loss and even improves the performance of standard weak-sparseness UBSS approaches

    Monaural Audio Separation Using Spectral Template and Isolated Note Information

    Get PDF

    Convolutive Blind Source Separation Methods

    Get PDF
    In this chapter, we provide an overview of existing algorithms for blind source separation of convolutive audio mixtures. We provide a taxonomy, wherein many of the existing algorithms can be organized, and we present published results from those algorithms that have been applied to real-world audio separation tasks

    Underdetermined instantaneous audio source separation via local Gaussian modeling

    Get PDF
    International audienceUnderdetermined source separation is often carried out by modeling time-frequency source coefficients via a fixed sparse prior. This approach fails when the number of active sources in one time-frequency bin is larger than the number of channels or when active sources lie on both sides of an inactive source. In this article, we partially address these issues by modeling time-frequency source coefficients via Gaussian priors with free variances. We study the resulting maximum likelihood criterion and derive a fast non-iterative optimization algorithm that finds the global minimum. We show that this algorithm outperforms state-of-the- art approaches over stereo instantaneous speech mixtures
    • …
    corecore