4,125 research outputs found

    Better Answers to Real Questions

    Full text link
    We consider existential problems over the reals. Extended quantifier elimination generalizes the concept of regular quantifier elimination by providing in addition answers, which are descriptions of possible assignments for the quantified variables. Implementations of extended quantifier elimination via virtual substitution have been successfully applied to various problems in science and engineering. So far, the answers produced by these implementations included infinitesimal and infinite numbers, which are hard to interpret in practice. We introduce here a post-processing procedure to convert, for fixed parameters, all answers into standard real numbers. The relevance of our procedure is demonstrated by application of our implementation to various examples from the literature, where it significantly improves the quality of the results

    The rapid points of a complex oscillation

    Full text link
    By considering a counting-type argument on Brownian sample paths, we prove a result similar to that of Orey and Taylor on the exact Hausdorff dimension of the rapid points of Brownian motion. Because of the nature of the proof we can then apply the concepts to so-called complex oscillations (or 'algorithmically random Brownian motion'), showing that their rapid points have the same dimension.Comment: 11 page

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    SU(2) nonstandard bases: the case of mutually unbiased bases

    Get PDF
    This paper deals with bases in a finite-dimensional Hilbert space. Such a space can be realized as a subspace of the representation space of SU(2) corresponding to an irreducible representation of SU(2). The representation theory of SU(2) is reconsidered via the use of two truncated deformed oscillators. This leads to replace the familiar scheme {j^2, j_z} by a scheme {j^2, v(ra)}, where the two-parameter operator v(ra) is defined in the enveloping algebra of the Lie algebra su(2). The eigenvectors of the commuting set of operators {j^2, v(ra)} are adapted to a tower of chains SO(3) > C(2j+1), 2j integer, where C(2j+1) is the cyclic group of order 2j+1. In the case where 2j+1 is prime, the corresponding eigenvectors generate a complete set of mutually unbiased bases. Some useful relations on generalized quadratic Gauss sums are exposed in three appendices.Comment: 33 pages; version2: rescaling of generalized Hadamard matrices, acknowledgment and references added, misprints corrected; version 3: published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA/ (22 pages

    Neutrality and Many-Valued Logics

    Get PDF
    In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, Goedel's, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena.Comment: 119 page
    corecore