274 research outputs found

    On the role of commutator arguments in the development of parameter-robust preconditioners for Stokes control problems

    Get PDF
    The development of preconditioners for PDE-constrained optimization problems is a field of numerical analysis which has recently generated much interest. One class of problems which has been investigated in particular is that of Stokes control problems, that is the problem of minimizing a functional with the Stokes (or Navier-Stokes) equations as constraints. In this manuscript, we present an approach for preconditioning Stokes control problems using preconditioners for the Poisson control problem and, crucially, the application of a commutator argument. This methodology leads to two block diagonal preconditioners for the problem, one of which was previously derived by W. Zulehner in 2011 (SIAM. J. Matrix Anal. & Appl., v.32) using a nonstandard norm argument for this saddle point problem, and the other of which we believe to be new. We also derive two related block triangular preconditioners using the same methodology, and present numerical results to demonstrate the performance of the four preconditioners in practice

    Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity

    Get PDF
    A stress equilibration procedure for linear elasticity is proposed and analyzed in this paper with emphasis on the behavior for (nearly) incompressible materials. Based on the displacement-pressure approximation computed with a stable finite element pair, it constructs an H(div)H (\text{div})-conforming, weakly symmetric stress reconstruction. Our focus is on the Taylor-Hood combination of continuous finite element spaces of polynomial degrees k+1k+1 and kk for the displacement and the pressure, respectively. Our construction leads then to reconstructed stresses by Raviart-Thomas elements of degree kk which are weakly symmetric in the sense that its anti-symmetric part is zero tested against continuous piecewise polynomial functions of degree kk. The computation is performed locally on a set of vertex patches covering the computational domain in the spirit of equilibration \cite{BraSch:08}. Due to the weak symmetry constraint, the local problems need to satisfy consistency conditions associated with all rigid body modes, in contrast to the case of Poisson's equation where only the constant modes are involved. The resulting error estimator is shown to constitute a guaranteed upper bound for the error with a constant that depends only on the shape regularity of the triangulation. Local efficiency, uniformly in the incompressible limit, is deduced from the upper bound by the residual error estimator
    • …
    corecore