1,140 research outputs found

    Role of noncovalent interactions in protein peripheral membrane binding. Computational perspectives

    Get PDF
    Noncovalent forces are important driving forces in nature particularly in biology, and they dictate many biological processes including the binding of peripheral protein to the cell membrane. The widely acknowledged models describe this process as electrostatics driven membrane adsorption followed by short-range protein-lipid interactions i.e. hydrogen bonds, hydrophobic interactions. Some of the key elements in such models are: clusters of basic residues are essential for electrostatic adsorption, and basic residues contribute equally to the membrane binding. Nevertheless, none of these models account for the role of cation-π interactions in membrane binding. With selected protein candidates, we further explore these models and work towards a generalized description of protein peripheral binding to membranes in terms of noncovalent forces. Our investigation highlights the limitations of these existing descriptions. We demonstrate that the requirement of having a cluster of basic residues is not essential. Further, we show that the contributions of basic residues are distance dependent. In other words, their localization in the membrane-water interface determines their strength and hence is not equal. We also establish the role of tyrosine-choline cation- π interactions in membrane binding of peripheral proteins. We explore in detail the nature of tyrosine-choline mediated cation-π interactions using high-level quantum mechanical calculations. Later, this information is used to improve the description of cation-π interactions in molecular simulation models. These improvements of force field parameters are further tested using molecular dynamics simulations. Finally, we used this information to build an interaction diagram that can be used to better describe the binding of peripheral proteins to the cell membrane. Future testing and the generalization of this diagram will further establish this as a common model

    Selectivity of pyoverdine recognition by the FpvA receptor of Pseudomonas aeruginosa from molecular dynamics simulations

    Get PDF
    International audienceThe Gram-negative bacterium Pseudomonas aeruginosa, a ubiquitous human opportunistic pathogen, has developed resistances to multiple antibiotics. It uses its primary native siderophore, pyoverdine, to scavenge the iron essential to its growth in the outside medium and transport it back into its cytoplasm. The FpvA receptor on the bacterial outer membrane recognizes and internalizes pyoverdine bearing its iron payload, but can also bind pyoverdines from other Pseudomonads or synthetic analogues. Pyoverdine derivatives could therefore be used as vectors to deliver antibiotics into the bacterium. In this study, we use molecular dynamics and free energy calculations to characterize the mechanisms and thermodynamics of the recognition of the native pyoverdines of P. aeruginosa and P. fluorescens by FpvA. Based on these results, we delineate the features that pyoverdines with high affinity for FpvA should possess. In particular, we show that (i) the dynamics and interaction of the unbound pyoverdines with water should be optimized with equal care as the interface contacts in the complex with FpvA; (ii) the C-terminal extremity of the pyoverdine chain, which appears to play no role in the bound complex, is involved in the intermediate stages of recognition; and (iii) the length and cyclicity of the pyoverdine chain can be used to fine-tune the kinetics of the recognition mechanism

    Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives

    Get PDF
    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.Ministerio de Ciencia y TecnologĂ­a DPI2010-20399-C04-0

    Modeling and Simulation of Cell Adhesion and Detachment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Sviluppo di metodi fotochimici per la sintesi di particelle Janus con specifiche proprietĂ  e capacitĂ  di auto-assemblaggio

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy

    Get PDF
    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe朠EG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe朠EG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces

    Force and affinity in cellulosomal complexes

    Get PDF
    In dieser Arbeit werden die molekularen Mechanismen der Organisation des Cellulosoms - ein komplexes extrazellulĂ€res Proteinnetzwerk - als Modellsystem fĂŒr Protein-Protein Interaktionen mittels biophysikalischer Methoden untersucht. Dieses extrazellulĂ€re Organell ermöglicht bestimmten Bakterien die Zersetzung von Cellulose, indem es Enzyme und Cellulose-BindedomĂ€nen auf gerĂŒstartigen Proteinstrukturen in synergistischer Weise kombiniert. Die einzelnen Komponenten werden hierbei von einer Klasse von Rezeptor-Liganden-Paaren namens Cohesin- Dockerin in ihrer Stöchiometrie und Anordnung funktionell kombiniert. Ein Teil dieser Arbeit besteht in der EntschlĂŒsselung der molekularen Bindemechanismen des Cohesins CohE, welches das Bakterium Ruminococcus flavefaciens mit seinem Cellusom verbindet. Durch die Kombination von EinzelmolekĂŒl-Kraftspektroskopie mit Molekulardynamik-Simulationen konnte die aussergewöhnliche Belastbarkeit der Interaktionen von CohE mit zwei homologen Dockerinen entschlĂŒsselt werden. Hierbei wurde insbesondere der Einfluss der Kraftpropagation innerhalb eines Proteinkomplexes auf dessen mechanische WiderstandsfĂ€higkeit untersucht. Die physiologische Verankerung ĂŒber den carboxyl-Terminus von CohE erwies sich als deutlich robuster im Vergleich zu einer nicht nativen N-terminalen Verankerung. Um den Kontrast zwischen hoher mechanischer Belastbarkeit bei moderaten AffinitĂ€ten im nano- bis mikromolaren Bereich besser verstehen zu können, wandte ich mich der Bestimmung der kinetischen Ratenkonstanten koff und kon zu, deren Quotient die Gleichgewichtskonstante bildet. WĂ€hrend es eine kleine Dissoziationskonstante dem Bakterium ermöglichen wĂŒrde die von ihm exprimierte Nanomaschinerie fest an sich zu binden, könnte ein höheres koff und kon einen dynamischeren Austausch von Cellulosomen innerhalb des Mikrobioms ermöglichen. ZusĂ€tzlich stellte sich die Frage, ob die Verankerungsgeometrie auch in Abwesenheit von Kraft Einfluss auf das Bindeverhalten nehmen wĂŒrde. Nachdem initiale Messungen mittels OberflĂ€chenplasmonenresonanzspektroskopie inkonsistent waren, wurde eine neuartige, enzymbasierte Kopplungsstrategie fĂŒr oberflĂ€chengebundene AffinitĂ€tsbestimmungen entwickelt. Hiermit konnte CohE funktional und spezifisch auf SensoroberflĂ€chen immobilisiert werden. Es zeigte sich, dass in Abwesenheit von externer Kraft die Verankerungsgeometrie von CohE keinen Einfluss auf das Bindeverhalten hat. Dies bestĂ€rkt im Umkehrschluss die Hypothese, dass mechanische StabilitĂ€ten stets geometrieabhĂ€ngig zu untersuchen sind. Im Rahmen dieser Arbeit wurden auch methodische Verbesserungen in der EinzelmolekĂŒlkraftspektroskopie erzielt. Zum einen wurde eine Strategie entwickelt, um ProteindomĂ€nen zeitsparend in vitro zu exprimieren und ohne weitere Aufreinigung spezifisch auf ObjekttrĂ€gern zu verankern. Die darauffolgende enzymatische Peptidligation eines Dockerins via Sortase A erlaubt es nun, mit hohem Durchsatz Entfaltungsstudien an Proteinen mithilfe der Cohesin-Dockerin Interaktion durchzufĂŒhren. Weiterhin ermöglichte es dieselbe Sortase-vermittelte Peptidligation, die gĂ€ngigen Polyethylenlinker durch Elastin-Ă€hnliche Peptide zu ersetzen. Dies verhindert Artefakte, die sonst durch Polyethylenlinker bei Protein-Kraftspektroskopie ĂŒber 100 pN entstĂŒnden. Zuletzt wurde der Entfaltungsprozess einer Cohesin-DomĂ€ne aus Acetivibrio cellulolyticus untersucht, deren Familie in vorangegangenen Studien teils bimodale Entfaltungskraftverteilungen zeigte. Durch die Kombination zweier Messmodi konnte die Kraft-Ladungsrate ĂŒber fĂŒnf GrĂ¶ĂŸenordnungen variiert werden. Es konnte gezeigt werden, dass das dabei beobachtete Verhalten mit einer KonformationsĂ€nderung wĂ€hrend der experimentellen Zeitskala zwischen verschiedenen, gefalteten Konformationen konsistent ist
    • 

    corecore